Covers the basics of contamination control for the beginner, while also focusing in depth on critical issues of process engineering and circuit manufacturing for the more advanced reader. Stresses to readers that what makes the area of contamination control unique is its ubiquitous nature, across all facets of semiconductor manufacturing. Clean room technology, well-recognized as a fundamental requirement in modern day circuit manufacturing, barely scratches the surface in total contamination control.
Covers the basics of contamination control for the beginner, while also focusing in depth on critical issues of process engineering and circuit manufacturing for the more advanced reader. Stresses to readers that what makes the area of contamination control unique is its ubiquitous nature, across all facets of semiconductor manufacturing. Clean room technology, well-recognized as a fundamental requirement in modern day circuit manufacturing, barely scratches the surface in total contamination control.
This Tutorial Text provides a comprehensive introduction to the subject of contamination control, with specific applications to the aerospace industry. The author draws upon his many years as a practicing contamination control engineer, researcher, and teacher. The book examines methods to quantify the cleanliness level required by various contamination-sensitive surfaces and to predict the end-of-life contamination level for those surfaces, and it identifies contamination control techniques required to ensure mission success.
The world of microelectronics is filled with cusses measurement systems, manufacturing many success stories. From the use of semi control techniques, test, diagnostics, and fail ure analysis. It discusses methods for modeling conductors for powerful desktop computers to their use in maintaining optimum engine per and reducing defects, and for preventing de formance in modem automobiles, they have fects in the first place. The approach described, clearly improved our daily lives. The broad while geared to the microelectronics world, has useability of the technology is enabled, how applicability to any manufacturing process of similar complexity. The authors comprise some ever, only by the progress made in reducing their cost and improving their reliability. De of the best scientific minds in the world, and fect reduction receives a significant focus in our are practitioners of the art. The information modem manufacturing world, and high-quality captured here is world class. I know you will diagnostics is the key step in that process. find the material to be an excellent reference in of product failures enables step func Analysis your application. tion improvements in yield and reliability. which works to reduce cost and open up new Dr. Paul R. Low applications and technologies. IBM Vice President and This book describes the process ofdefect re of Technology Products General Manager duction in the microelectronics world.
Retaining the comprehensive and in-depth approach that cemented the bestselling first edition's place as a standard reference in the field, the Handbook of Semiconductor Manufacturing Technology, Second Edition features new and updated material that keeps it at the vanguard of today's most dynamic and rapidly growing field. Iconic experts Robert Doering and Yoshio Nishi have again assembled a team of the world's leading specialists in every area of semiconductor manufacturing to provide the most reliable, authoritative, and industry-leading information available. Stay Current with the Latest Technologies In addition to updates to nearly every existing chapter, this edition features five entirely new contributions on... Silicon-on-insulator (SOI) materials and devices Supercritical CO2 in semiconductor cleaning Low-κ dielectrics Atomic-layer deposition Damascene copper electroplating Effects of terrestrial radiation on integrated circuits (ICs) Reflecting rapid progress in many areas, several chapters were heavily revised and updated, and in some cases, rewritten to reflect rapid advances in such areas as interconnect technologies, gate dielectrics, photomask fabrication, IC packaging, and 300 mm wafer fabrication. While no book can be up-to-the-minute with the advances in the semiconductor field, the Handbook of Semiconductor Manufacturing Technology keeps the most important data, methods, tools, and techniques close at hand.
This book covers all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the book is on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications. The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called ""war stories"", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language.
This book examines electronics reliability and measurement technology. It identifies advances in measurement science and technology for nondestructive evaluation, and it details common measurement trouble spots.
Contamination control is being used by more and more industries where the highest level of cleanliness and hygiene is of vital importance. This book covers the basic principles of contamination control and cleanroom technology from a holistic point of view. It deals with cleanliness and hygiene and their effects on the outcome of a process, reflecting the latest results from both scientific and practical points of view. The following topics are covered: contaminants and how they are measured cleanrooms and clean zones cleaning and decontamination cleanroom clothing the impact of people on cleanliness. Intended as an introduction to the area of contamination control, the text is also an excellent source of knowledge for people with both theoretical and practical experience. The Swedish version has been used for a long time within the Nordic countries as a basic training textbook within the pharmaceutical, microelectronics, food and beverage, optics and many other industries.