Hypergraph Theory

Hypergraph Theory

Author: Alain Bretto

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 129

ISBN-13: 3319000802

DOWNLOAD EBOOK

This book provides an introduction to hypergraphs, its aim being to overcome the lack of recent manuscripts on this theory. In the literature hypergraphs have many other names such as set systems and families of sets. This work presents the theory of hypergraphs in its most original aspects, while also introducing and assessing the latest concepts on hypergraphs. The variety of topics, their originality and novelty are intended to help readers better understand the hypergraphs in all their diversity in order to perceive their value and power as mathematical tools. This book will be a great asset to upper-level undergraduate and graduate students in computer science and mathematics. It has been the subject of an annual Master's course for many years, making it also ideally suited to Master's students in computer science, mathematics, bioinformatics, engineering, chemistry, and many other fields. It will also benefit scientists, engineers and anyone else who wants to understand hypergraphs theory.


Hypergraphs and Designs

Hypergraphs and Designs

Author: Mario Gionfriddo

Publisher: Nova Science Publishers

Published: 2015

Total Pages: 0

ISBN-13: 9781633219113

DOWNLOAD EBOOK

Combinatorial designs represent an important area of contemporary discrete mathematics closely related to such fields as finite geometries, regular graphs and multigraphs, factorisations of graphs, linear algebra, number theory, finite fields, group and quasigroup theory, Latin squares, and matroids. It has a history of more than 150 years when it started as a collection of unrelated problems. Nowadays the field is a well-developed theory with deep mathematical results and a wide range of applications in coding theory, cryptography, computer science, and other areas. In the most general setting, a combinatorial design consists of a ground set of elements and a collection of subsets of these elements satisfying some specific restrictions; the latter are often expressed in the language of graphs. On the other side, hypergraph theory is a relatively new field which started in early 60s of the last century as a generalization of graph theory. A hypergraph consists of a ground set of elements and a collection of subsets of these elements without any specific restrictions. In this sense the concept of hypergraph is more general than the concept of combinatorial design. While it started as a generalization of graph theory, hypergraph theory soon became a separate subject because many new properties have been discovered that miss or degenerate in graphs. Compared to graph theory, the language of hypergraphs not only allows us to formulate and solve more general problems, it also helps us to understand and solve several graph theory problems by simplifying and unifying many previously unrelated concepts. The main feature of this book is applying the hypergraph approach to the theory of combinatorial designs. An alternative title of it could be "Combinatorial designs as hypergraphs". There is no analogue to this book on the market. Its primary audience is researchers and graduate students taking courses in design theory, combinatorial geometry, finite geometry, discrete mathematics, graph theory, combinatorics, cryptography, information and coding theory, and similar areas. The aim of this book is to show the connection and mutual benefit between hypergraph theory and design theory. It does not intend to give a survey of all important results or methods in any of these subjects.


Hypergraphs

Hypergraphs

Author: C. Berge

Publisher: Elsevier

Published: 1984-05-01

Total Pages: 267

ISBN-13: 0080880231

DOWNLOAD EBOOK

Graph Theory has proved to be an extremely useful tool for solving combinatorial problems in such diverse areas as Geometry, Algebra, Number Theory, Topology, Operations Research and Optimization. It is natural to attempt to generalise the concept of a graph, in order to attack additional combinatorial problems. The idea of looking at a family of sets from this standpoint took shape around 1960. In regarding each set as a ``generalised edge'' and in calling the family itself a ``hypergraph'', the initial idea was to try to extend certain classical results of Graph Theory such as the theorems of Turán and König. It was noticed that this generalisation often led to simplification; moreover, one single statement, sometimes remarkably simple, could unify several theorems on graphs. This book presents what seems to be the most significant work on hypergraphs.


Introduction to Random Graphs

Introduction to Random Graphs

Author: Alan Frieze

Publisher: Cambridge University Press

Published: 2016

Total Pages: 483

ISBN-13: 1107118506

DOWNLOAD EBOOK

The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.


Graphs of Groups on Surfaces

Graphs of Groups on Surfaces

Author: A.T. White

Publisher: North Holland

Published: 2001-05-11

Total Pages: 378

ISBN-13: 9780444500755

DOWNLOAD EBOOK

The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English church-bell music. The latter is facilitated by imbedding the right graph of the right group on an appropriate surface, with suitable symmetries. Throughout the emphasis is on Cayley maps: imbeddings of Cayley graphs for finite groups as (possibly branched) covering projections of surface imbeddings of loop graphs with one vertex. This is not as restrictive as it might sound; many developments in topological graph theory involve such imbeddings. The approach aims to make all this interconnected material readily accessible to a beginning graduate (or an advanced undergraduate) student, while at the same time providing the research mathematician with a useful reference book in topological graph theory. The focus will be on beautiful connections, both elementary and deep, within mathematics that can best be described by the intuitively pleasing device of imbedding graphs of groups on surfaces.


Hypergroup Theory

Hypergroup Theory

Author: Bijan Davvaz

Publisher: World Scientific

Published: 2021-12-28

Total Pages: 300

ISBN-13: 9811249407

DOWNLOAD EBOOK

The book presents an updated study of hypergroups, being structured on 12 chapters in starting with the presentation of the basic notions in the domain: semihypergroups, hypergroups, classes of subhypergroups, types of homomorphisms, but also key notions: canonical hypergroups, join spaces and complete hypergroups. A detailed study is dedicated to the connections between hypergroups and binary relations, starting from connections established by Rosenberg and Corsini. Various types of binary relations are highlighted, in particular equivalence relations and the corresponding quotient structures, which enjoy certain properties: commutativity, cyclicity, solvability.A special attention is paid to the fundamental beta relationship, which leads to a group quotient structure. In the finite case, the number of non-isomorphic Rosenberg hypergroups of small orders is mentioned. Also, the study of hypergroups associated with relations is extended to the case of hypergroups associated to n-ary relations. Then follows an applied excursion of hypergroups in important chapters in mathematics: lattices, Pawlak approximation, hypergraphs, topology, with various properties, characterizations, varied and interesting examples. The bibliography presented is an updated one in the field, followed by an index of the notions presented in the book, useful in its study.


Handbook of Research on Advanced Applications of Graph Theory in Modern Society

Handbook of Research on Advanced Applications of Graph Theory in Modern Society

Author: Pal, Madhumangal

Publisher: IGI Global

Published: 2019-08-30

Total Pages: 615

ISBN-13: 1522593829

DOWNLOAD EBOOK

In the world of mathematics and computer science, technological advancements are constantly being researched and applied to ongoing issues. Setbacks in social networking, engineering, and automation are themes that affect everyday life, and researchers have been looking for new techniques in which to solve these challenges. Graph theory is a widely studied topic that is now being applied to real-life problems. The Handbook of Research on Advanced Applications of Graph Theory in Modern Society is an essential reference source that discusses recent developments on graph theory, as well as its representation in social networks, artificial neural networks, and many complex networks. The book aims to study results that are useful in the fields of robotics and machine learning and will examine different engineering issues that are closely related to fuzzy graph theory. Featuring research on topics such as artificial neural systems and robotics, this book is ideally designed for mathematicians, research scholars, practitioners, professionals, engineers, and students seeking an innovative overview of graphic theory.


Algorithmic Graph Theory and Perfect Graphs

Algorithmic Graph Theory and Perfect Graphs

Author: Martin Charles Golumbic

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 307

ISBN-13: 1483271978

DOWNLOAD EBOOK

Algorithmic Graph Theory and Perfect Graphs provides an introduction to graph theory through practical problems. This book presents the mathematical and algorithmic properties of special classes of perfect graphs. Organized into 12 chapters, this book begins with an overview of the graph theoretic notions and the algorithmic design. This text then examines the complexity analysis of computer algorithm and explains the differences between computability and computational complexity. Other chapters consider the parameters and properties of a perfect graph and explore the class of perfect graphs known as comparability graph or transitively orientable graphs. This book discusses as well the two characterizations of triangulated graphs, one algorithmic and the other graph theoretic. The final chapter deals with the method of performing Gaussian elimination on a sparse matrix wherein an arbitrary choice of pivots may result in the filling of some zero positions with nonzeros. This book is a valuable resource for mathematicians and computer scientists.