Group Theory and Numerical Analysis

Group Theory and Numerical Analysis

Author: Pavel Winternitz

Publisher: American Mathematical Soc.

Published:

Total Pages: 316

ISBN-13: 9780821870341

DOWNLOAD EBOOK

The Workshop on Group Theory and Numerical Analysis brought together scientists working in several different but related areas. The unifying theme was the application of group theory and geometrical methods to the solution of differential and difference equations. The emphasis was on the combination of analytical and numerical methods and also the use of symbolic computation. This meeting was organized under the auspices of the Centre de Recherches Mathematiques, Universite de Montreal (Canada). This volume has the character of a monograph and should represent a useful reference book for scientists working in this highly topical field.


Combinatorial Group Theory

Combinatorial Group Theory

Author: Roger C. Lyndon

Publisher: Springer

Published: 2015-03-12

Total Pages: 354

ISBN-13: 3642618960

DOWNLOAD EBOOK

From the reviews: "This book [...] defines the boundaries of the subject now called combinatorial group theory. [...] it is a considerable achievement to have concentrated a survey of the subject into 339 pages. [...] a valuable and welcome addition to the literature, containing many results not previously available in a book. It will undoubtedly become a standard reference." Mathematical Reviews


Theory and Applications of Numerical Analysis

Theory and Applications of Numerical Analysis

Author: G. M. Phillips

Publisher: Elsevier

Published: 1996-07-05

Total Pages: 461

ISBN-13: 0080519121

DOWNLOAD EBOOK

Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included. - a unique blend of theory and applications - two brand new chapters on eigenvalues and splines - inclusion of formal algorithms - numerous fully worked examples - a large number of problems, many with solutions


Linear Algebra and Group Theory for Physicists and Engineers

Linear Algebra and Group Theory for Physicists and Engineers

Author: Yair Shapira

Publisher: Springer Nature

Published: 2023-01-16

Total Pages: 583

ISBN-13: 3031224221

DOWNLOAD EBOOK

This textbook demonstrates the strong interconnections between linear algebra and group theory by presenting them simultaneously, a pedagogical strategy ideal for an interdisciplinary audience. Being approached together at the same time, these two topics complete one another, allowing students to attain a deeper understanding of both subjects. The opening chapters introduce linear algebra with applications to mechanics and statistics, followed by group theory with applications to projective geometry. Then, high-order finite elements are presented to design a regular mesh and assemble the stiffness and mass matrices in advanced applications in quantum chemistry and general relativity. This text is ideal for undergraduates majoring in engineering, physics, chemistry, computer science, or applied mathematics. It is mostly self-contained—readers should only be familiar with elementary calculus. There are numerous exercises, with hints or full solutions provided. A series of roadmaps are also provided to help instructors choose the optimal teaching approach for their discipline. The second edition has been revised and updated throughout and includes new material on the Jordan form, the Hermitian matrix and its eigenbasis, and applications in numerical relativity and electromagnetics.


How to Think About Analysis

How to Think About Analysis

Author: Lara Alcock

Publisher: OUP Oxford

Published: 2014-09-25

Total Pages: 272

ISBN-13: 0191035378

DOWNLOAD EBOOK

Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.


Topics in Geometric Group Theory

Topics in Geometric Group Theory

Author: Pierre de la Harpe

Publisher: University of Chicago Press

Published: 2000-10-15

Total Pages: 320

ISBN-13: 9780226317199

DOWNLOAD EBOOK

In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.


Group Theory

Group Theory

Author: Mildred S. Dresselhaus

Publisher: Springer Science & Business Media

Published: 2007-12-18

Total Pages: 576

ISBN-13: 3540328998

DOWNLOAD EBOOK

This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.


Real Mathematical Analysis

Real Mathematical Analysis

Author: Charles Chapman Pugh

Publisher: Springer Science & Business Media

Published: 2013-03-19

Total Pages: 445

ISBN-13: 0387216847

DOWNLOAD EBOOK

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.


Handbook of Computational Group Theory

Handbook of Computational Group Theory

Author: Derek F. Holt

Publisher: CRC Press

Published: 2005-01-13

Total Pages: 532

ISBN-13: 1420035215

DOWNLOAD EBOOK

The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics. The Handbook of Computational Group Theory offers the first complete treatment of all the fundame


Computation with Linear Algebraic Groups

Computation with Linear Algebraic Groups

Author: Willem Adriaan de Graaf

Publisher: CRC Press

Published: 2017-08-07

Total Pages: 324

ISBN-13: 1498722911

DOWNLOAD EBOOK

Designed as a self-contained account of a number of key algorithmic problems and their solutions for linear algebraic groups, this book combines in one single text both an introduction to the basic theory of linear algebraic groups and a substantial collection of useful algorithms. Computation with Linear Algebraic Groups offers an invaluable guide to graduate students and researchers working in algebraic groups, computational algebraic geometry, and computational group theory, as well as those looking for a concise introduction to the theory of linear algebraic groups.