Heating and Cooling with Ground-Source Heat Pumps in Moderate and Cold Climates, Two-Volume Set

Heating and Cooling with Ground-Source Heat Pumps in Moderate and Cold Climates, Two-Volume Set

Author: Vasile Minea

Publisher: CRC Press

Published: 2022-07-30

Total Pages: 841

ISBN-13: 1000564584

DOWNLOAD EBOOK

Heating and Cooling with Ground-Source Heat Pumps in Moderate and Cold Climates, Two-Volume Set focuses on the use of very low-temperature geothermal energy for heating and cooling residential, institutional, and industrial buildings, and aims to increase the design community’s awareness and knowledge of the benefits, design, and installation requirements of commercial/institutional building ground-source heat pumps (GSHP). This set helps readers assess applicability, select a GSHP system type, and estimate building thermal load to ensure proper size for ground-source subsystems, appropriate brine and groundwater flow rates, and apt design of building closed-loops with distributed or central geothermal heat pumps. The first volume addresses fundamentals and design principles of vertical and horizontal indirect and direct expansion closed-loop, as well as ground- and surface-water ground-source heat pump systems. It explains the thermodynamic aspects of mechanical and thermochemical compression cycles of geothermal heat pumps, as well as the energetic, economic, and environmental aspects associated with the use of ground-source heat pump systems for heating and cooling residential and commercial/institutional buildings in moderate and cold climates. The second volume focuses on applications and cases studies of ground-source heat pumps in moderate and cold climates. It details technical aspects, as well as the most common and uncommon application fields of basic system configurations. The principles of system integrations and applications in moderate and cold climates are also presented, each followed by case studies. This comprehensive work is aimed at designers of HVAC systems, as well as geological, mechanical, and chemical engineers implementing environmentally-friendly heating and cooling technologies for buildings.


Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates

Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates

Author: Vasile Minea

Publisher: CRC Press

Published: 2022-04-19

Total Pages: 331

ISBN-13: 1000564312

DOWNLOAD EBOOK

Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates: Design Principles, Potential Applications and Case Studies focuses on applications and cases studies of ground-source heat pumps in moderate and cold climates. It details technical aspects (such as materials, thermal fluid carriers and pumping, and drilling/trenching technologies), as well as the most common and uncommon application fields for basic system configurations. The principles of system integrations and applications in moderate and cold climates (such as hybrid, solar-assisted, thermo-syphon, foundation, mines, snow melting, district heating and cooling ground-source heat pump systems, etc.) are also presented, each followed by case studies. Based on the author's more than 30 years of technical experience Discusses ground-source heat pump technologies that can be successfully applied in moderate and cold climates Presents several case studies, including successful energy results, as well as the main lessons learned This work is aimed at designers of HVAC systems, as well as geological, mechanical, and chemical engineers implementing environmentally-friendly heating and cooling technologies for buildings.


An Introduction to Frozen Ground Engineering

An Introduction to Frozen Ground Engineering

Author: Orlando B. Andersland

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 363

ISBN-13: 1475722907

DOWNLOAD EBOOK

Frozen Ground Engineering first introduces the reader to the frozen environment and the behavior of frozen soil as an engineering material. In subsequent chapters this information is used in the analysis and design of ground support systems, foundations, and embankments. These and other topics make this book suitable for use by civil engineering students in a one-semester course on frozen ground engineering at the senior or first-year-graduate level. Students are assumed to have a working knowledge of undergraduate mechanics (statics and mechanics of materials) and geotechnical engineering (usual two-course sequence). A knowledge of basic geology would be helpful but is not essential. This book will also be useful to advanced students in other disciplines and to engineers who desire an introduction to frozen ground engineering or references to selected technical publications in the field. BACKGROUND Frozen ground engineering has developed rapidly in the past several decades under the pressure of necessity. As practical problems involving frozen soils broadened in scope, the inadequacy of earlier methods for coping became increasingly apparent. The application of ground freezing to geotechnical projects throughout the world continues to grow as significant advances have been made in ground freezing technology. Freezing is a useful and versatile technique for temporary earth support, groundwater control in difficult soil or rock strata, and the formation of subsurface containment barriers suitable for use in groundwater remediation projects.


Geothermal Heating and Cooling

Geothermal Heating and Cooling

Author: Stephen P. Kavanaugh

Publisher:

Published: 2014

Total Pages: 0

ISBN-13: 9781936504855

DOWNLOAD EBOOK

Geothermal Heating and Cooling is a complete revision of Ground-Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings, which is recognized as the primary reference for nonresidential ground-source heat pump (GSHP) installations. This new work takes advantage of the many lessons learned since the time of the original publication, when GSHPs were primarily residential applications. Many improvements have evolved, and performance data, both positive and negative, is now available to guide the development of best practices. This essential guide for HVAC design engineers, design-build contractors, GSHP subcontractors, and energy/construction managers also provides building owners and architects with insights into characteristics of quality engineering firms and the information that should be provided by design firms competing for GSHP projects.This revision draws on new ASHRAE and industry research in critical areas, as well as measured data from long-term installations and optimized installation practices used by high-production GSHP contractors. Nearly all chapters and appendices were completely rewritten, and they include coverage of closed-loop ground (ground-coupled), groundwater, and surface-water systems plus GSHP equipment and piping. Additional information on site characterization has been added, including a new hydrogeological chapter. Another new chapter contains results of recent field studies, energy and demand characteristics, and updated information to optimize GSHP system cost. While other publications deal primarily with ground-coupled heat pumps, this text includes detailed coverage of groundwater, surface-water, and GSHP costs.Tables, graphs, and equations are provided in both Inch-Pound (I-P) and International System (SI) units. As a bonus, supplemental Microsoft® Excel® macro-enabled spreadsheets for a variety of GSHP calculations accompany the text.


Geothermal HVAC

Geothermal HVAC

Author: Jay Egg

Publisher: McGraw Hill Professional

Published: 2010-11-05

Total Pages: 272

ISBN-13: 0071746110

DOWNLOAD EBOOK

In-depth, practical details on geothermal HVAC systems This definitive guide covers commercial and residential geothermal heating, ventilation, and air conditioning technologies and explains how to take advantage of their money- and energy-saving features. Geothermal HVAC: Green Heating and Cooling reviews the array of choices currently available, offers market values for systems based on varying options and conditions, and describes how to pair the best systems for each application and budget. Whether you're a contractor or a consumer, you'll find out what you need to know to implement a geothermal HVAC system in a retrofit or new construction project, and start benefiting from this sustainable, affordable technology. Find out how to: Learn the basic types of heat transfer--convection, conduction, and radiation Understand how geothermal earth-coupled heat pumps work Determine which ground loops to use for earth coupling to best meet the demands of the site Use load sharing to channel the heat differential of one device into useful energy for another Calculate system efficiencies and heat gain and loss Understand geothermal project proposals and system pricing Benefit from incentives, tax credits, and rebates for geothermal HVAC systems Calculate your long-term return on investment Verify that your installed system is working as intended Troubleshoot your system and avoid common problems


Cold Climate HVAC 2018

Cold Climate HVAC 2018

Author: Dennis Johansson

Publisher: Springer

Published: 2018-12-12

Total Pages: 1045

ISBN-13: 303000662X

DOWNLOAD EBOOK

This volume presents the proceedings of the 9th Cold Climate HVAC conference, which was held in Kiruna, Sweden in 2018. The conference highlighted key technologies and processes that allow scientists, designers, engineers, manufacturers and other decision makers in cold climate regions to achieve good indoor environmental quality (IEQ) with a minimum use of energy and other resources. The conference addressed various technical, economic and social aspects of buildings and HVAC systems in new and renovated buildings. This proceedings volume gathers peer-reviewed papers by a diverse and international range of authors and showcases perspectives and practices in cold climate building design from around the globe. The following major aspects, which include both fundamental and theoretical research as well as applications and case studies, are covered: (1) Energy and power efficiency and low-energy buildings; (2) Renovating buildings; (3) Efficient HVAC components; (4) Heat pumps and geothermal systems; (5) Municipal and city energy systems; (6) Construction management; (7) Buildings in operation; (8) Building simulation; (9) Reference data; (10) Transdisciplinary connections and social aspects; (11) Indoor environments and health; (12) Moisture safety and water damage; (13) Codes, regulations, standards and policies; and (14) Other aspects of buildings in cold climates.


Handbook of Energy Systems in Green Buildings

Handbook of Energy Systems in Green Buildings

Author: Ruzhu Wang

Publisher: Springer

Published: 2018-06-18

Total Pages: 0

ISBN-13: 9783662491195

DOWNLOAD EBOOK

This handbook provides a comprehensive summary on the energy systems used in green buildings, with a particular focus on solar energy - the most common renewable energy source applied in this field. With the growing concern about environmental protections, the concepts of green building have been widely promoted and implemented in nowadays building designs and constructions. Among all, sustainable energy systems, including energy harvesting, conversion, and storage, is one of most important design factors in green buildings. Unlike traditional energy systems which highly rely on fossil fuel, green buildings utilize renewable energy source or high efficient energy systems, or both, to provide environmental friendly, low carbon waste energy. The most updated concepts, designs, technologies developed and implemented in heat pumps, cooling systems, power systems, and energy storage will be discussed here in details. This handbook is subdivided into 7-9 main sections to provide an in-depth discussion from foundational principles to practical techniques. In addition, different cases about green energy systems implemented in global will be discussed. The book will be structured easy-to-read, to make it more accessible to graduate students and professionals in diverse scientific and engineering communities, including applied physics, civil engineering, electrical engineering, mechanical engineering, material engineering, and chemical engineering.