Grothendieck Duality and Base Change

Grothendieck Duality and Base Change

Author: Brian Conrad

Publisher: Springer Science & Business Media

Published: 2000-12-12

Total Pages: 302

ISBN-13: 3540411348

DOWNLOAD EBOOK

Grothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory.


Grothendieck Duality and Base Change

Grothendieck Duality and Base Change

Author: Brian Conrad

Publisher: Springer

Published: 2003-07-01

Total Pages: 302

ISBN-13: 354040015X

DOWNLOAD EBOOK

Grothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory.


Foundations of Grothendieck Duality for Diagrams of Schemes

Foundations of Grothendieck Duality for Diagrams of Schemes

Author: Joseph Lipman

Publisher: Springer

Published: 2009-03-07

Total Pages: 471

ISBN-13: 3540854207

DOWNLOAD EBOOK

Part One of this book covers the abstract foundations of Grothendieck duality theory for schemes in part with noetherian hypotheses and with some refinements for maps of finite tor-dimension. Part Two extends the theory to the context of diagrams of schemes.


Arithmetic Duality Theorems

Arithmetic Duality Theorems

Author: J. S. Milne

Publisher:

Published: 1986

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

Here, published for the first time, are the complete proofs of the fundamental arithmetic duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry. The text covers these theorems in Galois cohomology, ,tale cohomology, and flat cohomology and addresses applications in the above areas. The writing is expository and the book will serve as an invaluable reference text as well as an excellent introduction to the subject.


Étale Cohomology

Étale Cohomology

Author: James S. Milne

Publisher: Princeton University Press

Published: 2025-04-08

Total Pages: 365

ISBN-13: 0691273774

DOWNLOAD EBOOK

An authoritative introduction to the essential features of étale cohomology A. Grothendieck’s work on algebraic geometry is one of the most important mathematical achievements of the twentieth century. In the early 1960s, he and M. Artin introduced étale cohomology to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry but also in several different branches of number theory and in the representation theory of finite and p-adic groups. In this classic book, James Milne provides an invaluable introduction to étale cohomology, covering the essential features of the theory. Milne begins with a review of the basic properties of flat and étale morphisms and the algebraic fundamental group. He then turns to the basic theory of étale sheaves and elementary étale cohomology, followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Milne proves the fundamental theorems in étale cohomology—those of base change, purity, Poincaré duality, and the Lefschetz trace formula—and applies these theorems to show the rationality of some very general L-series.


Algebraic Geometry and Arithmetic Curves

Algebraic Geometry and Arithmetic Curves

Author: Qing Liu

Publisher: Oxford University Press

Published: 2006-06-29

Total Pages: 593

ISBN-13: 0191547808

DOWNLOAD EBOOK

This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.


Etale Cohomology Theory

Etale Cohomology Theory

Author: Lei Fu

Publisher: World Scientific

Published: 2011-01-31

Total Pages: 622

ISBN-13: 9814464805

DOWNLOAD EBOOK

New Edition available hereEtale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra.


Foundations of Grothendieck Duality for Diagrams of Schemes

Foundations of Grothendieck Duality for Diagrams of Schemes

Author: Joseph Lipman

Publisher: Springer Science & Business Media

Published: 2009-02-05

Total Pages: 471

ISBN-13: 3540854193

DOWNLOAD EBOOK

The first part written by Joseph Lipman, accessible to mid-level graduate students, is a full exposition of the abstract foundations of Grothendieck duality theory for schemes (twisted inverse image, tor-independent base change,...), in part without noetherian hypotheses, and with some refinements for maps of finite tor-dimension. The ground is prepared by a lengthy treatment of the rich formalism of relations among the derived functors, for unbounded complexes over ringed spaces, of the sheaf functors tensor, hom, direct and inverse image. Included are enhancements, for quasi-compact quasi-separated schemes, of classical results such as the projection and Künneth isomorphisms. In the second part, written independently by Mitsuyasu Hashimoto, the theory is extended to the context of diagrams of schemes. This includes, as a special case, an equivariant theory for schemes with group actions. In particular, after various basic operations on sheaves such as (derived) direct images and inverse images are set up, Grothendieck duality and flat base change for diagrams of schemes are proved. Also, dualizing complexes are studied in this context. As an application to group actions, we generalize Watanabe's theorem on the Gorenstein property of invariant subrings.


Lectures on Logarithmic Algebraic Geometry

Lectures on Logarithmic Algebraic Geometry

Author: Arthur Ogus

Publisher: Cambridge University Press

Published: 2018-11-08

Total Pages: 559

ISBN-13: 1107187737

DOWNLOAD EBOOK

A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.