Graph Algorithms

Graph Algorithms

Author: Mark Needham

Publisher: "O'Reilly Media, Inc."

Published: 2019-05-16

Total Pages: 297

ISBN-13: 1492047635

DOWNLOAD EBOOK

Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark


Graphs, Networks and Algorithms

Graphs, Networks and Algorithms

Author: Dieter Jungnickel

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 597

ISBN-13: 3662038226

DOWNLOAD EBOOK

Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed


Algorithms on Trees and Graphs

Algorithms on Trees and Graphs

Author: Gabriel Valiente

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 492

ISBN-13: 366204921X

DOWNLOAD EBOOK

Graph algorithms is a well-established subject in mathematics and computer science. Beyond classical application fields, such as approximation, combinatorial optimization, graphics, and operations research, graph algorithms have recently attracted increased attention from computational molecular biology and computational chemistry. Centered around the fundamental issue of graph isomorphism, this text goes beyond classical graph problems of shortest paths, spanning trees, flows in networks, and matchings in bipartite graphs. Advanced algorithmic results and techniques of practical relevance are presented in a coherent and consolidated way. This book introduces graph algorithms on an intuitive basis followed by a detailed exposition in a literate programming style, with correctness proofs as well as worst-case analyses. Furthermore, full C++ implementations of all algorithms presented are given using the LEDA library of efficient data structures and algorithms.


Graphs, Algorithms, and Optimization, Second Edition

Graphs, Algorithms, and Optimization, Second Edition

Author: William Kocay

Publisher: CRC Press

Published: 2016-11-03

Total Pages: 430

ISBN-13: 1482251256

DOWNLOAD EBOOK

The second edition of this popular book presents the theory of graphs from an algorithmic viewpoint. The authors present the graph theory in a rigorous, but informal style and cover most of the main areas of graph theory. The ideas of surface topology are presented from an intuitive point of view. We have also included a discussion on linear programming that emphasizes problems in graph theory. The text is suitable for students in computer science or mathematics programs. ?


Graphs, Algorithms, and Optimization

Graphs, Algorithms, and Optimization

Author: William Kocay

Publisher: CRC Press

Published: 2017-09-20

Total Pages: 504

ISBN-13: 135198912X

DOWNLOAD EBOOK

Graph theory offers a rich source of problems and techniques for programming and data structure development, as well as for understanding computing theory, including NP-Completeness and polynomial reduction. A comprehensive text, Graphs, Algorithms, and Optimization features clear exposition on modern algorithmic graph theory presented in a rigorous yet approachable way. The book covers major areas of graph theory including discrete optimization and its connection to graph algorithms. The authors explore surface topology from an intuitive point of view and include detailed discussions on linear programming that emphasize graph theory problems useful in mathematics and computer science. Many algorithms are provided along with the data structure needed to program the algorithms efficiently. The book also provides coverage on algorithm complexity and efficiency, NP-completeness, linear optimization, and linear programming and its relationship to graph algorithms. Written in an accessible and informal style, this work covers nearly all areas of graph theory. Graphs, Algorithms, and Optimization provides a modern discussion of graph theory applicable to mathematics, computer science, and crossover applications.


Graph Algorithms in the Language of Linear Algebra

Graph Algorithms in the Language of Linear Algebra

Author: Jeremy Kepner

Publisher: SIAM

Published: 2011-01-01

Total Pages: 388

ISBN-13: 9780898719918

DOWNLOAD EBOOK

The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.


Graphs

Graphs

Author: K. Thulasiraman

Publisher: John Wiley & Sons

Published: 2011-03-29

Total Pages: 480

ISBN-13: 1118030257

DOWNLOAD EBOOK

This adaptation of an earlier work by the authors is a graduate text and professional reference on the fundamentals of graph theory. It covers the theory of graphs, its applications to computer networks and the theory of graph algorithms. Also includes exercises and an updated bibliography.


Algorithms and Models for the Web Graph

Algorithms and Models for the Web Graph

Author: Bogumił Kamiński

Publisher: Springer Nature

Published: 2020-06-02

Total Pages: 183

ISBN-13: 3030484785

DOWNLOAD EBOOK

This book constitutes the proceedings of the 17th International Workshop on Algorithms and Models for the Web Graph, WAW 2020, held in Warsaw, Poland, in September 2020. The 12 full papers presented in this volume were carefully reviewed and selected from 19 submissions. The aim of the workshop was to further the understanding of graphs that arise from the Web and various user activities on the Web, and stimulate the development of high-performance algorithms and applications that exploit these graphs. Due to the corona pandemic the conference was postponed from June 2020 to September 2020.


Guide to Graph Algorithms

Guide to Graph Algorithms

Author: K Erciyes

Publisher: Springer

Published: 2018-04-13

Total Pages: 475

ISBN-13: 3319732358

DOWNLOAD EBOOK

This clearly structured textbook/reference presents a detailed and comprehensive review of the fundamental principles of sequential graph algorithms, approaches for NP-hard graph problems, and approximation algorithms and heuristics for such problems. The work also provides a comparative analysis of sequential, parallel and distributed graph algorithms – including algorithms for big data – and an investigation into the conversion principles between the three algorithmic methods. Topics and features: presents a comprehensive analysis of sequential graph algorithms; offers a unifying view by examining the same graph problem from each of the three paradigms of sequential, parallel and distributed algorithms; describes methods for the conversion between sequential, parallel and distributed graph algorithms; surveys methods for the analysis of large graphs and complex network applications; includes full implementation details for the problems presented throughout the text; provides additional supporting material at an accompanying website. This practical guide to the design and analysis of graph algorithms is ideal for advanced and graduate students of computer science, electrical and electronic engineering, and bioinformatics. The material covered will also be of value to any researcher familiar with the basics of discrete mathematics, graph theory and algorithms.