Graph-theoretic Techniques for Web Content Mining

Graph-theoretic Techniques for Web Content Mining

Author: Adam Schenker

Publisher: World Scientific

Published: 2005

Total Pages: 250

ISBN-13: 9812563393

DOWNLOAD EBOOK

This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. Through the use of graph distance ? a relatively new approach for determining graph similarity ? the authors show how well-known algorithms, such as k-means clustering and k-nearest neighbors classification, can be easily extended to work with graphs instead of vectors. This allows for the utilization of additional information found in graph representations, while at the same time employing well-known, proven algorithms.To demonstrate and investigate these novel techniques, the authors have selected the domain of web content mining, which involves the clustering and classification of web documents based on their textual substance. Several methods of representing web document content by graphs are introduced; an interesting feature of these representations is that they allow for a polynomial time distance computation, something which is typically an NP-complete problem when using graphs. Experimental results are reported for both clustering and classification in three web document collections using a variety of graph representations, distance measures, and algorithm parameters.In addition, this book describes several other related topics, many of which provide excellent starting points for researchers and students interested in exploring this new area of machine learning further. These topics include creating graph-based multiple classifier ensembles through random node selection and visualization of graph-based data using multidimensional scaling.


Graph-theoretic Techniques for Web Content Mining

Graph-theoretic Techniques for Web Content Mining

Author: Adam Schenker

Publisher: World Scientific

Published: 2005

Total Pages: 249

ISBN-13: 9812563393

DOWNLOAD EBOOK

This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. Through the use of graph distance ? a relatively new approach for determining graph similarity ? the authors show how well-known algorithms, such as k-means clustering and k-nearest neighbors classification, can be easily extended to work with graphs instead of vectors. This allows for the utilization of additional information found in graph representations, while at the same time employing well-known, proven algorithms.To demonstrate and investigate these novel techniques, the authors have selected the domain of web content mining, which involves the clustering and classification of web documents based on their textual substance. Several methods of representing web document content by graphs are introduced; an interesting feature of these representations is that they allow for a polynomial time distance computation, something which is typically an NP-complete problem when using graphs. Experimental results are reported for both clustering and classification in three web document collections using a variety of graph representations, distance measures, and algorithm parameters.In addition, this book describes several other related topics, many of which provide excellent starting points for researchers and students interested in exploring this new area of machine learning further. These topics include creating graph-based multiple classifier ensembles through random node selection and visualization of graph-based data using multidimensional scaling.


Mining Graph Data

Mining Graph Data

Author: Diane J. Cook

Publisher: John Wiley & Sons

Published: 2006-12-18

Total Pages: 501

ISBN-13: 0470073039

DOWNLOAD EBOOK

This text takes a focused and comprehensive look at mining data represented as a graph, with the latest findings and applications in both theory and practice provided. Even if you have minimal background in analyzing graph data, with this book you’ll be able to represent data as graphs, extract patterns and concepts from the data, and apply the methodologies presented in the text to real datasets. There is a misprint with the link to the accompanying Web page for this book. For those readers who would like to experiment with the techniques found in this book or test their own ideas on graph data, the Web page for the book should be http://www.eecs.wsu.edu/MGD.


Graph Mining

Graph Mining

Author: Deepayan Chakrabarti

Publisher: Morgan & Claypool Publishers

Published: 2012-10-01

Total Pages: 209

ISBN-13: 160845116X

DOWNLOAD EBOOK

What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions


Towards a Theoretical Framework for Analyzing Complex Linguistic Networks

Towards a Theoretical Framework for Analyzing Complex Linguistic Networks

Author: Alexander Mehler

Publisher: Springer

Published: 2015-07-07

Total Pages: 350

ISBN-13: 3662472384

DOWNLOAD EBOOK

The aim of this book is to advocate and promote network models of linguistic systems that are both based on thorough mathematical models and substantiated in terms of linguistics. In this way, the book contributes first steps towards establishing a statistical network theory as a theoretical basis of linguistic network analysis the boarder of the natural sciences and the humanities. This book addresses researchers who want to get familiar with theoretical developments, computational models and their empirical evaluation in the field of complex linguistic networks. It is intended to all those who are interested in statistical models of linguistic systems from the point of view of network research. This includes all relevant areas of linguistics ranging from phonological, morphological and lexical networks on the one hand and syntactic, semantic and pragmatic networks on the other. In this sense, the volume concerns readers from many disciplines such as physics, linguistics, computer science and information science. It may also be of interest for the upcoming area of systems biology with which the chapters collected here share the view on systems from the point of view of network analysis.


Graph-Based Methods in Computer Vision: Developments and Applications

Graph-Based Methods in Computer Vision: Developments and Applications

Author: Bai, Xiao

Publisher: IGI Global

Published: 2012-07-31

Total Pages: 395

ISBN-13: 1466618922

DOWNLOAD EBOOK

Computer vision, the science and technology of machines that see, has been a rapidly developing research area since the mid-1970s. It focuses on the understanding of digital input images in many forms, including video and 3-D range data. Graph-Based Methods in Computer Vision: Developments and Applications presents a sampling of the research issues related to applying graph-based methods in computer vision. These methods have been under-utilized in the past, but use must now be increased because of their ability to naturally and effectively represent image models and data. This publication explores current activity and future applications of this fascinating and ground-breaking topic.


Graph-theoretic Techniques For Web Content Mining

Graph-theoretic Techniques For Web Content Mining

Author: Adam Schenker

Publisher: World Scientific

Published: 2005-05-31

Total Pages: 249

ISBN-13: 9814480347

DOWNLOAD EBOOK

This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. Through the use of graph distance — a relatively new approach for determining graph similarity — the authors show how well-known algorithms, such as k-means clustering and k-nearest neighbors classification, can be easily extended to work with graphs instead of vectors. This allows for the utilization of additional information found in graph representations, while at the same time employing well-known, proven algorithms.To demonstrate and investigate these novel techniques, the authors have selected the domain of web content mining, which involves the clustering and classification of web documents based on their textual substance. Several methods of representing web document content by graphs are introduced; an interesting feature of these representations is that they allow for a polynomial time distance computation, something which is typically an NP-complete problem when using graphs. Experimental results are reported for both clustering and classification in three web document collections using a variety of graph representations, distance measures, and algorithm parameters.In addition, this book describes several other related topics, many of which provide excellent starting points for researchers and students interested in exploring this new area of machine learning further. These topics include creating graph-based multiple classifier ensembles through random node selection and visualization of graph-based data using multidimensional scaling.


Advances in Data Analysis, Data Handling and Business Intelligence

Advances in Data Analysis, Data Handling and Business Intelligence

Author: Andreas Fink

Publisher: Springer Science & Business Media

Published: 2009-10-14

Total Pages: 767

ISBN-13: 364201044X

DOWNLOAD EBOOK

Data Analysis, Data Handling and Business Intelligence are research areas at the intersection of computer science, artificial intelligence, mathematics, and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as in marketing, finance, economics, engineering, linguistics, archaeology, musicology, medical science, and biology. This volume contains the revised versions of selected papers presented during the 32nd Annual Conference of the German Classification Society (Gesellschaft für Klassifikation, GfKl). The conference, which was organized in cooperation with the British Classification Society (BCS) and the Dutch/Flemish Classification Society (VOC), was hosted by Helmut-Schmidt-University, Hamburg, Germany, in July 2008.


Behavior and Social Computing

Behavior and Social Computing

Author: Longbing Cao

Publisher: Springer

Published: 2013-12-13

Total Pages: 277

ISBN-13: 3319040480

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed proceedings of the International Workshops on Behavior and Social Informatics and Computing, BSIC 2013, held as collocated event of IJCAI 2013, in Beijing, China in August 2013 and the International Workshop on Behavior and Social Informatics, BSI 2013, held as satellite workshop of PAKDD 2013, in Gold Coast, Australia, in April 2013. The 23 papers presented were carefully reviewed and selected from 58 submissions. The papers study a wide range of techniques and methods for behavior/social-oriented analyses including behavioral and social interaction and network, behavioral/social patterns, behavioral/social impacts, the formation of behavioral/social-oriented groups and collective intelligence and behavioral/social intelligence emergence.