This volume links the concept of granular computing using deep learning and the Internet of Things to object tracking for video analysis. It describes how uncertainties, involved in the task of video processing, could be handled in rough set theoretic granular computing frameworks. Issues such as object tracking from videos in constrained situations, occlusion/overlapping handling, measuring of the reliability of tracking methods, object recognition and linguistic interpretation in video scenes, and event prediction from videos, are the addressed in this volume. The book also looks at ways to reduce data dependency in the context of unsupervised (without manual interaction/ labeled data/ prior information) training.This book may be used both as a textbook and reference book for graduate students and researchers in computer science, electrical engineering, system science, data science, and information technology, and is recommended for both students and practitioners working in computer vision, machine learning, video analytics, image analytics, artificial intelligence, system design, rough set theory, granular computing, and soft computing.
"This volume links the concept of granular computing using deep learning and the Internet of Things to object tracking for video analysis. It describes how uncertainties, involved in the task of video processing, could be handled in rough set theoretic granular computing frameworks. Issues such as object tracking from videos in constrained situations, occlusion/overlapping handling, measuring of the reliability of tracking methods, object recognition and linguistic interpretation in video scenes, and event prediction from videos, are the addressed in this volume. The book also looks at ways to reduce data dependency in the context of unsupervised (without manual interaction/ labeled data/ prior information) training. This book may be used both as a textbook and reference book for graduate students and researchers in computer science, electrical engineering, system science, data science, and information technology, and is recommended for both students and practitioners working in computer vision, machine learning, video analytics, image analytics, artificial intelligence, system design, rough set theory, granular computing, and soft computing"--
The book is a collection of research papers presented at the First International Conference on International Conference on Ambient Intelligence in Health Care (ICAIHC 2021) organized by Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University) University, Bhubaneswar, India, during April 15–16, 2022. It includes papers in the research area of e-health care, telemedicine, other medical technologies, life support systems, fast detection and diagnoses, developed technologies and innovative solutions, bioinformatics, and solutions for monitoring smart intelligent systems in health care.
Deep learning is an artificially intelligent entity that teaches itself and can be utilized to make predictions. Deep learning mimics the human brain and provides learned solutions addressing many challenging problems in the area of visual computing. From object recognition to image classification for diagnostics, deep learning has shown the power of artificial deep neural networks in solving real world visual computing problems with super-human accuracy. The introduction of deep learning into the field of visual computing has meant to be the death of most of the traditional image processing and computer vision techniques. Today, deep learning is considered to be the most powerful, accurate, efficient and effective method with the potential to solve many of the most challenging problems in visual computing. This book provides an insight into deep machine learning and the challenges in visual computing to tackle the novel method of machine learning. It introduces readers to the world of deep neural network architectures with easy-to-understand explanations. From face recognition to image classification for diagnosis of cancer, the book provides unique examples of solved problems in applied visual computing using deep learning. Interested and enthusiastic readers of modern machine learning methods will find this book easy to follow. They will find it a handy guide for designing and implementing their own projects in the field of visual computing.
Part 1 of this book deals with theoretical contributions of rough set theory, and parts 2 and 3 focus on several real world data mining applications. The book thoroughly explores recent results in rough set research.
This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine–firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine–wavelet (SVM–Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications. All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.
"The objective of this edited book is to provide the researchers with the recent advances in the fields of data analysis processing through fog computing, which are required to achieve in-depth knowledge in the field of concern to solve problems in real-time applications"--
Today, billions of devices are Internet-connected, IoT standards and protocols are stabilizing, and technical professionals must increasingly solve real problems with IoT technologies. Now, five leading Cisco IoT experts present the first comprehensive, practical reference for making IoT work. IoT Fundamentals brings together knowledge previously available only in white papers, standards documents, and other hard-to-find sources—or nowhere at all. The authors begin with a high-level overview of IoT and introduce key concepts needed to successfully design IoT solutions. Next, they walk through each key technology, protocol, and technical building block that combine into complete IoT solutions. Building on these essentials, they present several detailed use cases, including manufacturing, energy, utilities, smart+connected cities, transportation, mining, and public safety. Whatever your role or existing infrastructure, you’ll gain deep insight what IoT applications can do, and what it takes to deliver them. Fully covers the principles and components of next-generation wireless networks built with Cisco IOT solutions such as IEEE 802.11 (Wi-Fi), IEEE 802.15.4-2015 (Mesh), and LoRaWAN Brings together real-world tips, insights, and best practices for designing and implementing next-generation wireless networks Presents start-to-finish configuration examples for common deployment scenarios Reflects the extensive first-hand experience of Cisco experts
The term IoT, which was first proposed by Kevin Ashton, a British technologist, in 1999 has the potential to impact everything from new product opportunities to shop floor optimization to factory worker efficiency gains, that will power top-line and bottom-line gains. As IoT technology is being put to diversified use, the current technology needs to be improved to enhance privacy and built secure devices by adopting a security-focused approach, reducing the amount of data collected, increasing transparency and providing consumers with a choice to opt out. Therefore, the current volume has been compiled, in an effort to draw the various issues in IoT, challenges faced and existing solutions so far. Key Points: • Provides an overview of basic concepts and technologies of IoT with communication technologies ranging from 4G to 5G and its architecture. • Discusses recent security and privacy studies and social behavior of human beings over IoT. • Covers the issues related to sensors, business model, principles, paradigms, green IoT and solutions to handle relevant challenges. • Presents the readers with practical ideas of using IoT, how it deals with human dynamics, the ecosystem, the social objects and their relation. • Deals with the challenges involved in surpassing diversified architecture, protocol, communications, integrity and security.
A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.