This report is the second in a series of three evaluating underexploited African plant resources that could help broaden and secure Africa's food supply. The volume describes the characteristics of 18 little-known indigenous African vegetables (including tubers and legumes) that have potential as food- and cash-crops but are typically overlooked by scientists and policymakers and in the world at large. The book assesses the potential of each vegetable to help overcome malnutrition, boost food security, foster rural development, and create sustainable landcare in Africa. Each species is described in a separate chapter, based on information gathered from and verified by a pool of experts throughout the world. Volume I describes African grains and Volume III African fruits.
Scenes of starvation have drawn the world's attention to Africa's agricultural and environmental crisis. Some observers question whether this continent can ever hope to feed its growing population. Yet there is an overlooked food resource in sub-Saharan Africa that has vast potential: native food plants. When experts were asked to nominate African food plants for inclusion in a new book, a list of 30 species grew quickly to hundreds. All in all, Africa has more than 2,000 native grains and fruitsâ€""lost" species due for rediscovery and exploitation. This volume focuses on native cereals, including: African rice, reserved until recently as a luxury food for religious rituals. Finger millet, neglected internationally although it is a staple for millions. Fonio (acha), probably the oldest African cereal and sometimes called "hungry rice." Pearl millet, a widely used grain that still holds great untapped potential. Sorghum, with prospects for making the twenty-first century the "century of sorghum." Tef, in many ways ideal but only now enjoying budding commercial production. Other cultivated and wild grains. This readable and engaging book dispels myths, often based on Western bias, about the nutritional value, flavor, and yield of these African grains. Designed as a tool for economic development, the volume is organized with increasing levels of detail to meet the needs of both lay and professional readers. The authors present the available information on where and how each grain is grown, harvested, and processed, and they list its benefits and limitations as a food source. The authors describe "next steps" for increasing the use of each grain, outline research needs, and address issues in building commercial production. Sidebars cover such interesting points as the potential use of gene mapping and other "high-tech" agricultural techniques on these grains. This fact-filled volume will be of great interest to agricultural experts, entrepreneurs, researchers, and individuals concerned about restoring food production, environmental health, and economic opportunity in sub-Saharan Africa. Selection, Newbridge Garden Book Club
Continued population growth, rapidly changing consumption patterns and the impacts of climate change and environmental degradation are driving limited resources of food, energy, water and materials towards critical thresholds worldwide. These pressures are likely to be substantial across Africa, where countries will have to find innovative ways to boost crop and livestock production to avoid becoming more reliant on imports and food aid. Sustainable agricultural intensification - producing more output from the same area of land while reducing the negative environmental impacts - represents a solution for millions of African farmers. This volume presents the lessons learned from 40 sustainable agricultural intensification programmes in 20 countries across Africa, commissioned as part of the UK Government's Foresight project. Through detailed case studies, the authors of each chapter examine how to develop productive and sustainable agricultural systems and how to scale up these systems to reach many more millions of people in the future. Themes covered include crop improvements, agroforestry and soil conservation, conservation agriculture, integrated pest management, horticulture, livestock and fodder crops, aquaculture, and novel policies and partnerships.
This book is devoted to grain legumes and include eight chapters devoted to the breeding of specific grain legume crops and five general chapters dealing with important topics which are common to most of the species in focus. Soybean is not included in the book as it is commonly considered an oil crop more than a grain legume and is included in the Oil Crops Volume of the Handbook of Plant Breeding.Legume species belong to the Fabaceae family and are characterized by their fruit, usually called pod. Several species of this family were domesticated by humans, such as soybean, common bean, faba bean, pea, chickpea, lentil, peanut, or cowpea. Some of these species are of great relevance as human and animal food. Food legumes are consumed either by their immature pod or their dry seeds, which have a high protein content. Globally, grain legumes are the most relevant source of plant protein, especially in many countries of Africa and Latin America, but there are some constraints in their production, such as a poor adaptation, pest and diseases and unstable yield. Current research trends in Legumes are focused on new methodologies involving genetic and omic studies, as well as new approaches to the genetic improvement of these species, including the relationships with their symbiotic rhizobia.
The common beans and pulses are diverse food resources of high nutritional value (protein, energy, fiber and vitamins and minerals) with broad social acceptance. These legume crops demonstrate global adaptability, genotypic and phenotypic diversity, and multiple means of preparation and dietary use. Beans and pulses are produced in regions as diverse as Latin America, Africa, Asia, and North America, and on a scale similar to some other crops, such as wheat, corn, rice and soybeans. Numerous factors influence utilization, including bean type and cultivar selection, cropping environment and systems, storage conditions and handling infrastructure, processing and final product preparation. Nutrient content and bio-availability are dramatically influenced by these conditions. In recent years, beans and pulses have been cited for imparting specific positive health potentiating responses, such as hypocholesteremic response, mitigation of diabetes and colonic cancer, and weight control. Enhanced dry bean utilization focused on improved dietary health is an opportunity within both subsistent and developed populations. This book provides a contemporary source of information that brings together current knowledge and practices in the value chain of beans/pulses production, processing, and nutrition. It provides in-depth coverage of a wide variety of pertinent topics including: breeding, postharvest technologies, composition, processing technologies, food safety, quality, nutrition, and significance in human health. An experienced team of over 25 contributors from North America, Asia, and Africa has written 15 chapters, divided into three sections: Overview, production and postharvest technologies of beans and pulses Composition, value-added processing and quality Culinology, nutrition, and significance in human health Contributors come from a field of diverse disciplines, including crop sciences, food science and technology, food biochemistry, food engineering, nutritional sciences, and culinology. Dry Beans and Pulses Production, Processing and Nutrition is an essential resource for scientists, processors and nutritionists, whatever the work setting.
Legumes play an important role in the cropping systems of sub Saharan Africa (SSA). Legumes are an important source of nutrition to both humans and livestock by providing the much needed protein, minerals, fibre and vitamins. The sale of legumes seed, leaves and fibre generates income for the marginalized communities especially women. Cultivation of legumes is essential for the regeneration of nutrient-deficient soils. By biologically fixing nitrogen (BNF) in the soil, legumes provide a relatively low-cost method of replacing otherwise expensive inorganic nitrogen in the soil. This enhances soil fertility and boosts subsequent cereal crop yields. Production of legumes in SSA is however; hampered by a number of constraints among them low and declining soil fertility, low soil pH, high salinity, drought and flooding, poor access to improved germplasm, diseases, pests and weeds. Farmers need to learn how to overcome these constraints if the full benefits of legumes are to be gained. This book presents a synthesis of research work on legumes and draws attention to the importance of legumes in integrated soil fertility management (ISFM) and poverty alleviation in SSA.
Nitrogen fixation by leguminous plants is especially important when farmers are trying to minimise fertilizer use for cost or environmental reasons. This second edition of the highly successful book, first published in 1991, contains thoroughly updated and revised material on the theory and practice of nitrogen fixation in tropical cropping systems.
Pulses have a long history in sub-Saharan Africa due to their multiple benefits. Pulses, and legumes in general, can play an important role in agriculture because of their ability to biologically fix atmospheric nitrogen and to enhance the biological turnover of phosphorus; thus they could become the cornerstone of sustainable agriculture in Africa. In this sense, there is a body of literature that points to diversification of existing production systems – particularly legumes species, which provide critical environmental services, including soil erosion control and soil nutrient recapitalization. This publication is a review of some of the promising strategies to support the cultivation and utilization of pulses on smallholder farms in sub-Saharan Africa. The review is part of the legacy of the International Year of Pulses (IYP), which sought to recognize the contribution that pulses make to human well-being and the environment.