Global Stability of Dynamical Systems

Global Stability of Dynamical Systems

Author: Michael Shub

Publisher: Springer

Published: 2010-12-05

Total Pages: 150

ISBN-13: 9781441930798

DOWNLOAD EBOOK

These notes are the result of a course in dynamical systems given at Orsay during the 1976-77 academic year. I had given a similar course at the Gradu ate Center of the City University of New York the previous year and came to France equipped with the class notes of two of my students there, Carol Hurwitz and Michael Maller. My goal was to present Smale's n-Stability Theorem as completely and compactly as possible and in such a way that the students would have easy access to the literature. I was not confident that I could do all this in lectures in French, so I decided to distribute lecture notes. I wrote these notes in English and Remi Langevin translated them into French. His work involved much more than translation. He consistently corrected for style, clarity, and accuracy. Albert Fathi got involved in reading the manuscript. His role quickly expanded to extensive rewriting and writing. Fathi wrote (5. 1) and (5. 2) and rewrote Theorem 7. 8 when I was in despair of ever getting it right with all the details. He kept me honest at all points and played a large role in the final form of the manuscript. He also did the main work in getting the manuscript ready when I had left France and Langevin was unfortunately unavailable. I ran out of steam by the time it came to Chapter 10. M.


Uncertainty Modeling in Finite Element, Fatigue and Stability of Systems

Uncertainty Modeling in Finite Element, Fatigue and Stability of Systems

Author: Achintya Haldar

Publisher: World Scientific

Published: 1997

Total Pages: 437

ISBN-13: 9810231288

DOWNLOAD EBOOK

The functionality of modern structural, mechanical and electrical or electronic systems depends on their ability to perform under uncertain conditions. Consideration of uncertainties and their effect on system behavior is an essential and integral part of defining systems. In eleven chapters, leading experts present an overview of the current state of uncertainty modeling, analysis and design of large systems in four major areas: finite and boundary element methods (common structural analysis techniques), fatigue, stability analysis, and fault-tolerant systems. The content of this book is unique; it describes exciting research developments and challenges in emerging areas, and provide a sophisticated toolbox for tackling uncertainty modeling in real systems.


Global Stability of Dynamical Systems

Global Stability of Dynamical Systems

Author: Michael Shub

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 159

ISBN-13: 1475719477

DOWNLOAD EBOOK

These notes are the result of a course in dynamical systems given at Orsay during the 1976-77 academic year. I had given a similar course at the Gradu ate Center of the City University of New York the previous year and came to France equipped with the class notes of two of my students there, Carol Hurwitz and Michael Maller. My goal was to present Smale's n-Stability Theorem as completely and compactly as possible and in such a way that the students would have easy access to the literature. I was not confident that I could do all this in lectures in French, so I decided to distribute lecture notes. I wrote these notes in English and Remi Langevin translated them into French. His work involved much more than translation. He consistently corrected for style, clarity, and accuracy. Albert Fathi got involved in reading the manuscript. His role quickly expanded to extensive rewriting and writing. Fathi wrote (5. 1) and (5. 2) and rewrote Theorem 7. 8 when I was in despair of ever getting it right with all the details. He kept me honest at all points and played a large role in the final form of the manuscript. He also did the main work in getting the manuscript ready when I had left France and Langevin was unfortunately unavailable. I ran out of steam by the time it came to Chapter 10. M.


Stability Theory of Dynamical Systems

Stability Theory of Dynamical Systems

Author: N.P. Bhatia

Publisher: Springer Science & Business Media

Published: 2002-01-10

Total Pages: 252

ISBN-13: 9783540427483

DOWNLOAD EBOOK

Reprint of classic reference work. Over 400 books have been published in the series Classics in Mathematics, many remain standard references for their subject. All books in this series are reissued in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. "... The book has many good points: clear organization, historical notes and references at the end of every chapter, and an excellent bibliography. The text is well-written, at a level appropriate for the intended audience, and it represents a very good introduction to the basic theory of dynamical systems."


Random Perturbations of Dynamical Systems

Random Perturbations of Dynamical Systems

Author: Yuri Kifer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 301

ISBN-13: 1461581818

DOWNLOAD EBOOK

Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.


Complex-valued Neural Networks

Complex-valued Neural Networks

Author: Akira Hirose

Publisher: World Scientific

Published: 2003

Total Pages: 387

ISBN-13: 9812384642

DOWNLOAD EBOOK

In recent years, complex-valued neural networks have widened the scope of application in optoelectronics, imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information processing. In this first-ever book on complex-valued neural networks, the most active scientists at the forefront of the field describe theories and applications from various points of view to provide academic and industrial researchers with a comprehensive understanding of the fundamentals, features and prospects of the powerful complex-valued networks.


Dynamical Systems

Dynamical Systems

Author: Clark Robinson

Publisher: CRC Press

Published: 1998-11-17

Total Pages: 522

ISBN-13: 1482227878

DOWNLOAD EBOOK

Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student


Stability Theory for Dynamic Equations on Time Scales

Stability Theory for Dynamic Equations on Time Scales

Author: Anatoly A. Martynyuk

Publisher: Birkhäuser

Published: 2016-09-22

Total Pages: 233

ISBN-13: 3319422138

DOWNLOAD EBOOK

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.


Stability of Dynamical Systems

Stability of Dynamical Systems

Author:

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 516

ISBN-13: 0817644865

DOWNLOAD EBOOK

In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.


Dynamical Systems, Bifurcation Analysis and Applications

Dynamical Systems, Bifurcation Analysis and Applications

Author: Mohd Hafiz Mohd

Publisher: Springer Nature

Published: 2019-10-11

Total Pages: 239

ISBN-13: 9813298324

DOWNLOAD EBOOK

This book is the result of ​Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop. This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.