Global Solution Curves for Semilinear Elliptic Equations

Global Solution Curves for Semilinear Elliptic Equations

Author: Philip Korman

Publisher: World Scientific

Published: 2012

Total Pages: 254

ISBN-13: 9814374342

DOWNLOAD EBOOK

This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented. The author is one of the original contributors to the field of exact multiplicity results.


Elliptic & Parabolic Equations

Elliptic & Parabolic Equations

Author: Zhuoqun Wu

Publisher: World Scientific

Published: 2006

Total Pages: 428

ISBN-13: 9812700250

DOWNLOAD EBOOK

This book provides an introduction to elliptic and parabolic equations. While there are numerous monographs focusing separately on each kind of equations, there are very few books treating these two kinds of equations in combination. This book presents the related basic theories and methods to enable readers to appreciate the commonalities between these two kinds of equations as well as contrast the similarities and differences between them.


Non-linear Elliptic Equations in Conformal Geometry

Non-linear Elliptic Equations in Conformal Geometry

Author: Sun-Yung A. Chang

Publisher: European Mathematical Society

Published: 2004

Total Pages: 106

ISBN-13: 9783037190067

DOWNLOAD EBOOK

Non-linear elliptic partial differential equations are an important tool in the study of Riemannian metrics in differential geometry, in particular for problems concerning the conformal change of metrics in Riemannian geometry. In recent years the role played by the second order semi-linear elliptic equations in the study of Gaussian curvature and scalar curvature has been extended to a family of fully non-linear elliptic equations associated with other symmetric functions of the Ricci tensor. A case of particular interest is the second symmetric function of the Ricci tensor in dimension four closely related to the Pfaffian. In these lectures, starting from the background material, the author reviews the problem of prescribing Gaussian curvature on compact surfaces. She then develops the analytic tools (e.g., higher order conformal invariant operators, Sobolev inequalities, blow-up analysis) in order to solve a fully nonlinear equation in prescribing the Chern-Gauss-Bonnet integrand on compact manifolds of dimension four. The material is suitable for graduate students and research mathematicians interested in geometry, topology, and differential equations.


Lectures on Differential Equations

Lectures on Differential Equations

Author: Philip L. Korman

Publisher: American Mathematical Soc.

Published: 2019-08-30

Total Pages: 414

ISBN-13: 1470451735

DOWNLOAD EBOOK

Lectures on Differential Equations provides a clear and concise presentation of differential equations for undergraduates and beginning graduate students. There is more than enough material here for a year-long course. In fact, the text developed from the author's notes for three courses: the undergraduate introduction to ordinary differential equations, the undergraduate course in Fourier analysis and partial differential equations, and a first graduate course in differential equations. The first four chapters cover the classical syllabus for the undergraduate ODE course leavened by a modern awareness of computing and qualitative methods. The next two chapters contain a well-developed exposition of linear and nonlinear systems with a similarly fresh approach. The final two chapters cover boundary value problems, Fourier analysis, and the elementary theory of PDEs. The author makes a concerted effort to use plain language and to always start from a simple example or application. The presentation should appeal to, and be readable by, students, especially students in engineering and science. Without being excessively theoretical, the book does address a number of unusual topics: Massera's theorem, Lyapunov's inequality, the isoperimetric inequality, numerical solutions of nonlinear boundary value problems, and more. There are also some new approaches to standard topics including a rethought presentation of series solutions and a nonstandard, but more intuitive, proof of the existence and uniqueness theorem. The collection of problems is especially rich and contains many very challenging exercises. Philip Korman is professor of mathematics at the University of Cincinnati. He is the author of over one hundred research articles in differential equations and the monograph Global Solution Curves for Semilinear Elliptic Equations. Korman has served on the editorial boards of Communications on Applied Nonlinear Analysis, Electronic Journal of Differential Equations, SIAM Review, an\ d Differential Equations and Applications.


Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations

Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations

Author: Vicentiu D. Radulescu

Publisher: Hindawi Publishing Corporation

Published: 2008

Total Pages: 205

ISBN-13: 9774540395

DOWNLOAD EBOOK

This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.