Moments, Positive Polynomials and Their Applications

Moments, Positive Polynomials and Their Applications

Author: Jean-Bernard Lasserre

Publisher: World Scientific

Published: 2010

Total Pages: 384

ISBN-13: 1848164467

DOWNLOAD EBOOK

1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources


Convex Analysis and Global Optimization

Convex Analysis and Global Optimization

Author: Hoang Tuy

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 346

ISBN-13: 1475728093

DOWNLOAD EBOOK

Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization.


Genericity In Polynomial Optimization

Genericity In Polynomial Optimization

Author: Tien Son Pham

Publisher: World Scientific

Published: 2016-12-22

Total Pages: 261

ISBN-13: 1786342235

DOWNLOAD EBOOK

In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.Explanations focus on critical points and tangencies of polynomial optimization, Hölderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.


Handbook of Test Problems in Local and Global Optimization

Handbook of Test Problems in Local and Global Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 447

ISBN-13: 1475730403

DOWNLOAD EBOOK

This collection of challenging and well-designed test problems arising in literature studies also contains a wide spectrum of applications, including pooling/blending operations, heat exchanger network synthesis, homogeneous azeotropic separation, and dynamic optimization and optimal control problems.


Handbook of Global Optimization

Handbook of Global Optimization

Author: R. Horst

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 891

ISBN-13: 1461520258

DOWNLOAD EBOOK

Global optimization is concerned with the computation and characterization of global optima of nonlinear functions. During the past three decades the field of global optimization has been growing at a rapid pace, and the number of publications on all aspects of global optimization has been increasing steadily. Many applications, as well as new theoretical, algorithmic, and computational contributions have resulted. The Handbook of Global Optimization is the first comprehensive book to cover recent developments in global optimization. Each contribution in the Handbook is essentially expository in nature, but scholarly in its treatment. The chapters cover optimality conditions, complexity results, concave minimization, DC programming, general quadratic programming, nonlinear complementarity, minimax problems, multiplicative programming, Lipschitz optimization, fractional programming, network problems, trajectory methods, homotopy methods, interval methods, and stochastic approaches. The Handbook of Global Optimization is addressed to researchers in mathematical programming, as well as all scientists who use optimization methods to model and solve problems.


Recent Advances in Global Optimization

Recent Advances in Global Optimization

Author: Christodoulos A. Floudas

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 644

ISBN-13: 1400862523

DOWNLOAD EBOOK

This book will present the papers delivered at the first U.S. conference devoted exclusively to global optimization and will thus provide valuable insights into the significant research on the topic that has been emerging during recent years. Held at Princeton University in May 1991, the conference brought together an interdisciplinary group of the most active developers of algorithms for global optimization in order to focus the attention of the mathematical programming community on the unsolved problems and diverse applications of this field. The main subjects addressed at the conference were advances in deterministic and stochastic methods for global optimization, parallel algorithms for global optimization problems, and applications of global optimization. Although global optimization is primarily a mathematical problem, it is relevant to several other disciplines, including computer science, applied mathematics, physical chemistry, molecular biology, statistics, physics, engineering, operations research, communication theory, and economics. Global optimization problems originate from a wide variety of mathematical models of real-world systems. Some of its applications are allocation and location problems and VLSI and data-base design problems. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Global Optimization

Global Optimization

Author: Leo Liberti

Publisher: Springer Science & Business Media

Published: 2006-06-22

Total Pages: 433

ISBN-13: 0387305289

DOWNLOAD EBOOK

Most global optimization literature focuses on theory. This book, however, contains descriptions of new implementations of general-purpose or problem-specific global optimization algorithms. It discusses existing software packages from which the entire community can learn. The contributors are experts in the discipline of actually getting global optimization to work, and the book provides a source of ideas for people needing to implement global optimization software.


Introduction to Global Optimization

Introduction to Global Optimization

Author: R. Horst

Publisher: Springer Science & Business Media

Published: 2000-12-31

Total Pages: 376

ISBN-13: 9780792367567

DOWNLOAD EBOOK

A textbook for an undergraduate course in mathematical programming for students with a knowledge of elementary real analysis, linear algebra, and classical linear programming (simple techniques). Focuses on the computation and characterization of global optima of nonlinear functions, rather than the locally optimal solutions addressed by most books on optimization. Incorporates the theoretical, algorithmic, and computational advances of the past three decades that help solve globally multi-extreme problems in the mathematical modeling of real world systems. Annotation copyright by Book News, Inc., Portland, OR


Handbook of Global Optimization

Handbook of Global Optimization

Author: Panos M. Pardalos

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 571

ISBN-13: 1475753624

DOWNLOAD EBOOK

In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.