Constrained Global Optimization
Author: Panos M. Pardalos
Publisher: Springer
Published: 1987
Total Pages: 160
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Panos M. Pardalos
Publisher: Springer
Published: 1987
Total Pages: 160
ISBN-13:
DOWNLOAD EBOOKAuthor: Jean-Bernard Lasserre
Publisher: World Scientific
Published: 2010
Total Pages: 384
ISBN-13: 1848164467
DOWNLOAD EBOOK1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources
Author: R. Horst
Publisher: Springer Science & Business Media
Published: 2000-12-31
Total Pages: 376
ISBN-13: 9780792367567
DOWNLOAD EBOOKA textbook for an undergraduate course in mathematical programming for students with a knowledge of elementary real analysis, linear algebra, and classical linear programming (simple techniques). Focuses on the computation and characterization of global optima of nonlinear functions, rather than the locally optimal solutions addressed by most books on optimization. Incorporates the theoretical, algorithmic, and computational advances of the past three decades that help solve globally multi-extreme problems in the mathematical modeling of real world systems. Annotation copyright by Book News, Inc., Portland, OR
Author: Christodoulos A. Floudas
Publisher: Springer Science & Business Media
Published: 2008-09-04
Total Pages: 4646
ISBN-13: 0387747583
DOWNLOAD EBOOKThe goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
Author: Yurii Nesterov
Publisher: SIAM
Published: 1994-01-01
Total Pages: 414
ISBN-13: 9781611970791
DOWNLOAD EBOOKSpecialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.
Author: Marco Locatelli
Publisher: SIAM
Published: 2013-10-16
Total Pages: 439
ISBN-13: 1611972671
DOWNLOAD EBOOKThis volume contains a thorough overview of the rapidly growing field of global optimization, with chapters on key topics such as complexity, heuristic methods, derivation of lower bounds for minimization problems, and branch-and-bound methods and convergence. The final chapter offers both benchmark test problems and applications of global optimization, such as finding the conformation of a molecule or planning an optimal trajectory for interplanetary space travel. An appendix provides fundamental information on convex and concave functions. Intended for Ph.D. students, researchers, and practitioners looking for advanced solution methods to difficult optimization problems. It can be used as a supplementary text in an advanced graduate-level seminar.
Author: Stephen P. Boyd
Publisher: Cambridge University Press
Published: 2004-03-08
Total Pages: 744
ISBN-13: 9780521833783
DOWNLOAD EBOOKConvex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Author: Mung Chiang
Publisher: Now Publishers Inc
Published: 2005
Total Pages: 172
ISBN-13: 9781933019093
DOWNLOAD EBOOKRecently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.
Author: R. Horst
Publisher: Springer Science & Business Media
Published: 2013-12-11
Total Pages: 891
ISBN-13: 1461520258
DOWNLOAD EBOOKGlobal optimization is concerned with the computation and characterization of global optima of nonlinear functions. During the past three decades the field of global optimization has been growing at a rapid pace, and the number of publications on all aspects of global optimization has been increasing steadily. Many applications, as well as new theoretical, algorithmic, and computational contributions have resulted. The Handbook of Global Optimization is the first comprehensive book to cover recent developments in global optimization. Each contribution in the Handbook is essentially expository in nature, but scholarly in its treatment. The chapters cover optimality conditions, complexity results, concave minimization, DC programming, general quadratic programming, nonlinear complementarity, minimax problems, multiplicative programming, Lipschitz optimization, fractional programming, network problems, trajectory methods, homotopy methods, interval methods, and stochastic approaches. The Handbook of Global Optimization is addressed to researchers in mathematical programming, as well as all scientists who use optimization methods to model and solve problems.
Author: Panos M. Pardalos
Publisher: Springer Science & Business Media
Published: 2013-04-18
Total Pages: 571
ISBN-13: 1475753624
DOWNLOAD EBOOKIn 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.