Global Existence and Uniqueness of Nonlinear Evolutionary Fluid Equations

Global Existence and Uniqueness of Nonlinear Evolutionary Fluid Equations

Author: Yuming Qin

Publisher: Birkhäuser

Published: 2015-02-11

Total Pages: 217

ISBN-13: 3034805942

DOWNLOAD EBOOK

This book presents recent results on nonlinear evolutionary fluid equations such as the compressible (radiative) magnetohydrodynamics (MHD) equations, compressible viscous micropolar fluid equations, the full non-Newtonian fluid equations and non-autonomous compressible Navier-Stokes equations. These types of partial differential equations arise in many fields of mathematics, but also in other branches of science such as physics and fluid dynamics. This book will be a valuable resource for graduate students and researchers interested in partial differential equations, and will also benefit practitioners in physics and engineering.


Nonlinear Evolution Equations

Nonlinear Evolution Equations

Author: Songmu Zheng

Publisher: CRC Press

Published: 2004-07-08

Total Pages: 304

ISBN-13: 0203492226

DOWNLOAD EBOOK

Nonlinear evolution equations arise in many fields of sciences including physics, mechanics, and material science. This book introduces some important methods for dealing with these equations and explains clearly and concisely a wide range of relevant theories and techniques. These include the semigroup method, the compactness and monotone operator


Global Well-posedness and Asymptotic Behavior of the Solutions to Non-classical Thermo(visco)elastic Models

Global Well-posedness and Asymptotic Behavior of the Solutions to Non-classical Thermo(visco)elastic Models

Author: Yuming Qin

Publisher: Springer

Published: 2016-07-29

Total Pages: 206

ISBN-13: 981101714X

DOWNLOAD EBOOK

This book presents recent findings on the global existence, the uniqueness and the large-time behavior of global solutions of thermo(vis)coelastic systems and related models arising in physics, mechanics and materials science such as thermoviscoelastic systems, thermoelastic systems of types II and III, as well as Timoshenko-type systems with past history. Part of the book is based on the research conducted by the authors and their collaborators in recent years. The book will benefit interested beginners in the field and experts alike.


Differential and Difference Equations with Applications

Differential and Difference Equations with Applications

Author: Sandra Pinelas

Publisher: Springer Nature

Published: 2020-10-21

Total Pages: 754

ISBN-13: 3030563235

DOWNLOAD EBOOK

This edited volume gathers selected, peer-reviewed contributions presented at the fourth International Conference on Differential & Difference Equations Applications (ICDDEA), which was held in Lisbon, Portugal, in July 2019. First organized in 2011, the ICDDEA conferences bring together mathematicians from various countries in order to promote cooperation in the field, with a particular focus on applications. The book includes studies on boundary value problems; Markov models; time scales; non-linear difference equations; multi-scale modeling; and myriad applications.


The Water Waves Problem

The Water Waves Problem

Author: David Lannes

Publisher: American Mathematical Soc.

Published: 2013-05-08

Total Pages: 347

ISBN-13: 0821894706

DOWNLOAD EBOOK

This monograph provides a comprehensive and self-contained study on the theory of water waves equations, a research area that has been very active in recent years. The vast literature devoted to the study of water waves offers numerous asymptotic models.


Non-Newtonian Fluids

Non-Newtonian Fluids

Author: Boling Guo

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-10-08

Total Pages: 452

ISBN-13: 3110549409

DOWNLOAD EBOOK

This book provides an up-to-date overview of mathematical theories and research results in non-Newtonian fluid dynamics. Related mathematical models, solutions as well as numerical experiments are discussed. Fundamental theories and practical applications make it a handy reference for researchers and graduate students in mathematics, physics and engineering. Contents Non-Newtonian fluids and their mathematical model Global solutions to the equations of non-Newtonian fluids Global attractors of incompressible non-Newtonian fluids Global attractors of modified Boussinesq approximation Inertial manifolds of incompressible non-Newtonian fluids The regularity of solutions and related problems Global attractors and time-spatial chaos Non-Newtonian generalized fluid and their applications


Partial Differential Equations in China

Partial Differential Equations in China

Author: Chaohao Gu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 9401111987

DOWNLOAD EBOOK

In the past few years there has been a fruitful exchange of expertise on the subject of partial differential equations (PDEs) between mathematicians from the People's Republic of China and the rest of the world. The goal of this collection of papers is to summarize and introduce the historical progress of the development of PDEs in China from the 1950s to the 1980s. The results presented here were mainly published before the 1980s, but, having been printed in the Chinese language, have not reached the wider audience they deserve. Topics covered include, among others, nonlinear hyperbolic equations, nonlinear elliptic equations, nonlinear parabolic equations, mixed equations, free boundary problems, minimal surfaces in Riemannian manifolds, microlocal analysis and solitons. For mathematicians and physicists interested in the historical development of PDEs in the People's Republic of China.


Partial Differential Equations III

Partial Differential Equations III

Author: Michael Taylor

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 629

ISBN-13: 1475741901

DOWNLOAD EBOOK

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis. ^


Handbook of Mathematical Fluid Dynamics

Handbook of Mathematical Fluid Dynamics

Author: S. Friedlander

Publisher: Elsevier

Published: 2004-11-20

Total Pages: 702

ISBN-13: 9780444515568

DOWNLOAD EBOOK

The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.


The Global Nonlinear Stability of the Minkowski Space (PMS-41)

The Global Nonlinear Stability of the Minkowski Space (PMS-41)

Author: Demetrios Christodoulou

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 525

ISBN-13: 1400863171

DOWNLOAD EBOOK

The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter. Originally published in 1994. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.