Global Bifurcation of Periodic Solutions with Symmetry

Global Bifurcation of Periodic Solutions with Symmetry

Author: Bernold Fiedler

Publisher: Springer

Published: 2006-11-14

Total Pages: 151

ISBN-13: 3540391509

DOWNLOAD EBOOK

This largely self-contained research monograph addresses the following type of questions. Suppose one encounters a continuous time dynamical system with some built-in symmetry. Should one expect periodic motions which somehow reflect this symmetry? And how would periodicity harmonize with symmetry? Probing into these questions leads from dynamics to topology, algebra, singularity theory, and to many applications. Within a global approach, the emphasis is on periodic motions far from equilibrium. Mathematical methods include bifurcation theory, transversality theory, and generic approximations. A new homotopy invariant is designed to study the global interdependence of symmetric periodic motions. Besides mathematical techniques, the book contains 5 largely nontechnical chapters. The first three outline the main questions, results and methods. A detailed discussion pursues theoretical consequences and open problems. Results are illustrated by a variety of applications including coupled oscillators and rotating waves: these links to such disciplines as theoretical biology, chemistry, fluid dynamics, physics and their engineering counterparts make the book directly accessible to a wider audience.


Equadiff 99 (In 2 Volumes) - Proceedings Of The International Conference On Differential Equations

Equadiff 99 (In 2 Volumes) - Proceedings Of The International Conference On Differential Equations

Author: Bernold Fiedler

Publisher: World Scientific

Published: 2000-09-05

Total Pages: 838

ISBN-13: 9814522163

DOWNLOAD EBOOK

This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.


Bifurcation Theory of Functional Differential Equations

Bifurcation Theory of Functional Differential Equations

Author: Shangjiang Guo

Publisher: Springer Science & Business Media

Published: 2013-07-30

Total Pages: 295

ISBN-13: 1461469929

DOWNLOAD EBOOK

This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).


Bifurcation and Symmetry

Bifurcation and Symmetry

Author: BÖHMER

Publisher: Birkhäuser

Published: 2013-03-08

Total Pages: 323

ISBN-13: 3034875363

DOWNLOAD EBOOK

Symmetry is a property which occurs throughout nature and it is therefore natural that symmetry should be considered when attempting to model nature. In many cases, these models are also nonlinear and it is the study of nonlinear symmetric models that has been the basis of much recent work. Although systematic studies of nonlinear problems may be traced back at least to the pioneering contributions of Poincare, this remains an area with challenging problems for mathematicians and scientists. Phenomena whose models exhibit both symmetry and nonlinearity lead to problems which are challenging and rich in complexity, beauty and utility. In recent years, the tools provided by group theory and representation theory have proven to be highly effective in treating nonlinear problems involving symmetry. By these means, highly complex situations may be decomposed into a number of simpler ones which are already understood or are at least easier to handle. In the realm of numerical approximations, the systematic exploitation of symmetry via group repre sentation theory is even more recent. In the hope of stimulating interaction and acquaintance with results and problems in the various fields of applications, bifurcation theory and numerical analysis, we organized the conference and workshop Bifurcation and Symmetry: Cross Influences between Mathematics and Applications during June 2-7,8-14, 1991 at the Philipps University of Marburg, Germany.


International Conference on Differential Equations, Berlin, Germany, 1-7 August, 1999

International Conference on Differential Equations, Berlin, Germany, 1-7 August, 1999

Author: Bernold Fiedler

Publisher: World Scientific

Published: 2000

Total Pages: 846

ISBN-13: 9789810249885

DOWNLOAD EBOOK

This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences


Reviews of Nonlinear Dynamics and Complexity

Reviews of Nonlinear Dynamics and Complexity

Author: Heinz Georg Schuster

Publisher: John Wiley & Sons

Published: 2009-09-03

Total Pages: 227

ISBN-13: 3527626360

DOWNLOAD EBOOK

Adopting a cross-disciplinary approach, the review character of this monograph sets it apart from specialized journals. The editor is advised by a first-class board of international scientists, such that the carefully selected and invited contributions represent the latest and most relevant findings. The resulting review enables both researchers and newcomers in life science, physics, and chemistry to access the most important results in this field, using a common language.


Symmetry Breaking for Compact Lie Groups

Symmetry Breaking for Compact Lie Groups

Author: Mike Field

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 185

ISBN-13: 0821804359

DOWNLOAD EBOOK

This work comprises a general study of symmetry breaking for compact Lie groups in the context of equivariant bifurcation theory. We begin by extending the theory developed by Field and Richardson for absolutely irreducible representations of finite groups to general irreducible representations of compact Lie groups, while allowing for branches of relative equilibria and phenomena such as the Hopf bifurcation. We also present a general theory of determinacy for irreducible Lie group actions. We show that branching patterns for generic equivariant bifurcation problems defined on irreducible representations persist under perturbations by sufficiently high order non-equivariant terms.


Dynamics, Bifurcation and Symmetry

Dynamics, Bifurcation and Symmetry

Author: Pascal Chossat

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 355

ISBN-13: 9401109567

DOWNLOAD EBOOK

This book collects contributions to the conference" Dynamics, Bifurcation and Symmetry, new trends and new tools", which was held at the Institut d'Etudes Sci entifiques de Cargese (France), September 3-9, 1993. The first aim of this conference was to gather and summarize the work of the European Bifurcation Theory Group after two years of existence (the EBTG links european laboratories in five countries via an EC grant). Thanks to a NATO ARW grant, the conference developed into an international meeting on bifurcation theory and dynamical systems, with the partic ipation of leading specialists not only from Europe but also from overseas countries (Canada, USA, South America). It was a great satisfaction to notice the active, and quite enthusiastic participation of many young scientists. This is reflected in the present book for which many contributors are PhD students or post-doc researchers. Although several "big" themes (bifurcation with symmetry, low dimensional dynam ics, dynamics in EDP's, applications, . . . ) are present in these proceedings, we have divided the book into corresponding parts. In fact these themes overlap in most contributions, which seems to reflect a general tendancy in nonlinear science. I am very pleased to thank for their support the NATO International Exchange Scientific Program as well as the EEC Science Program, which made possible the suc cess of this conference.


Control of Self-Organizing Nonlinear Systems

Control of Self-Organizing Nonlinear Systems

Author: Eckehard Schöll

Publisher: Springer

Published: 2016-01-22

Total Pages: 478

ISBN-13: 3319280287

DOWNLOAD EBOOK

The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.


Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Author: Rico Berner

Publisher: Springer Nature

Published: 2021-05-31

Total Pages: 210

ISBN-13: 303074938X

DOWNLOAD EBOOK

The focus of this thesis is the interplay of synchrony and adaptivity in complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, neuroscience, medicine, socioeconomic systems, and engineering. Most prominently, synchronization takes place in the brain, where it is associated with cognitive capacities like learning and memory, but is also a characteristic of neurological diseases like Parkinson and epilepsy. Adaptivity is common in many networks in nature and technology, where the connectivity changes in time, i.e., the strength of the coupling is continuously adjusted depending upon the dynamic state of the system, for instance synaptic neuronal plasticity in the brain. This research contributes to a fundamental understanding of various synchronization patterns, including hierarchical multifrequency clusters, chimeras and other partial synchronization states. After a concise survey of the fundamentals of adaptive and complex dynamical networks and synaptic plasticity, in the first part of the thesis the existence and stability of cluster synchronization in globally coupled adaptive networks is discussed for simple paradigmatic phase oscillators as well as for a more realistic neuronal oscillator model with spike-timing dependent plasticity. In the second part of the thesis the interplay of adaptivity and connectivity is investigated for more complex network structures like nonlocally coupled rings, random networks, and multilayer systems. Besides presenting a plethora of novel, sometimes intriguing patterns of synchrony, the thesis makes a number of pioneering methodological advances, where rigorous mathematical proofs are given in the Appendices. These results are of interest not only from a fundamental point of view, but also with respect to challenging applications in neuroscience and technological systems.