Glencoe Science: Earth Materials and Processes, a module in the Glencoe Science 15 book series, provides students with accurate and comprehensive coverage of middle school National Science Education Standards. Concepts are explained in a clear, concise manner, and are integrated with a wide range of hands-on experiences, critical thinking opportunities, real-world applications, and connections to other sciences and to non-science areas of the curriculum. Co-authored by National Geographic, unparalleled graphics reinforce key concepts. A broad array of print and technology resources help differentiate and accommodate all learners. The modular approach allows you to mix and match books to meet your specific curriculum needs.
With age-appropriate, inquiry-centered curriculum materials and sound teaching practices, middle school science can capture the interest and energy of adolescent students and expand their understanding of the world around them. Resources for Teaching Middle School Science, developed by the National Science Resources Center (NSRC), is a valuable tool for identifying and selecting effective science curriculum materials that will engage students in grades 6 through 8. The volume describes more than 400 curriculum titles that are aligned with the National Science Education Standards. This completely new guide follows on the success of Resources for Teaching Elementary School Science, the first in the NSRC series of annotated guides to hands-on, inquiry-centered curriculum materials and other resources for science teachers. The curriculum materials in the new guide are grouped in five chapters by scientific areaâ€"Physical Science, Life Science, Environmental Science, Earth and Space Science, and Multidisciplinary and Applied Science. They are also grouped by typeâ€"core materials, supplementary units, and science activity books. Each annotation of curriculum material includes a recommended grade level, a description of the activities involved and of what students can be expected to learn, a list of accompanying materials, a reading level, and ordering information. The curriculum materials included in this book were selected by panels of teachers and scientists using evaluation criteria developed for the guide. The criteria reflect and incorporate goals and principles of the National Science Education Standards. The annotations designate the specific content standards on which these curriculum pieces focus. In addition to the curriculum chapters, the guide contains six chapters of diverse resources that are directly relevant to middle school science. Among these is a chapter on educational software and multimedia programs, chapters on books about science and teaching, directories and guides to science trade books, and periodicals for teachers and students. Another section features institutional resources. One chapter lists about 600 science centers, museums, and zoos where teachers can take middle school students for interactive science experiences. Another chapter describes nearly 140 professional associations and U.S. government agencies that offer resources and assistance. Authoritative, extensive, and thoroughly indexedâ€"and the only guide of its kindâ€"Resources for Teaching Middle School Science will be the most used book on the shelf for science teachers, school administrators, teacher trainers, science curriculum specialists, advocates of hands-on science teaching, and concerned parents.
Based on the Cornell note-taking format, this resource incorporates writing into the learning process. Directly linked to the student text, this notebook provides a systematic approach to learning science by encouraging students to engage by summarizing and synthesizing abstract concepts in their own words
Earth science is the study of Earth and space. It is the study of such things as the transfer of energy in Earth's atmosphere; the evolution of landforms; patterns of change that cause weather; the scale and structure of stars; and the interactions that occur among the water, atmosphere, and land. Earth science in this book is divided into four specific areas of study: geology, meteorology, astronomy, and oceanography. - p. 8-9.
This text provides a source of science content, methods and activities. It examines effective science teaching methods, explores how science instruction helps children improve knowledge-gaining skills, and provides the content, information and activities needed for a complete science course.
An exhilarating, time-traveling journey to the solar system’s strangest and most awe-inspiring volcanoes. Volcanoes are capable of acts of pyrotechnical prowess verging on magic: they spout black magma more fluid than water, create shimmering cities of glass at the bottom of the ocean and frozen lakes of lava on the moon, and can even tip entire planets over. Between lava that melts and re-forms the landscape, and noxious volcanic gases that poison the atmosphere, volcanoes have threatened life on Earth countless times in our planet’s history. Yet despite their reputation for destruction, volcanoes are inseparable from the creation of our planet. A lively and utterly fascinating guide to these geologic wonders, Super Volcanoes revels in the incomparable power of volcanic eruptions past and present, Earthbound and otherwise—and recounts the daring and sometimes death-defying careers of the scientists who study them. Science journalist and volcanologist Robin George Andrews explores how these eruptions reveal secrets about the worlds to which they belong, describing the stunning ways in which volcanoes can sculpt the sea, land, and sky, and even influence the machinery that makes or breaks the existence of life. Walking us through the mechanics of some of the most infamous eruptions on Earth, Andrews outlines what we know about how volcanoes form, erupt, and evolve, as well as what scientists are still trying to puzzle out. How can we better predict when a deadly eruption will occur—and protect communities in the danger zone? Is Earth’s system of plate tectonics, unique in the solar system, the best way to forge a planet that supports life? And if life can survive and even thrive in Earth’s extreme volcanic environments—superhot, superacidic, and supersaline surroundings previously thought to be completely inhospitable—where else in the universe might we find it? Traveling from Hawai‘i, Yellowstone, Tanzania, and the ocean floor to the moon, Venus, and Mars, Andrews illuminates the cutting-edge discoveries and lingering scientific mysteries surrounding these phenomenal forces of nature.
Valence Shell Electron Pair Repulsion (VSEPR) theory is a simple technique for predicting the geometry of atomic centers in small molecules and molecular ions. This authoritative reference was written by Istvan Hartiggai and the developer of VSEPR theory, Ronald J. Gillespie. In addition to its value as a text for courses in molecular geometry and chemistry, it constitutes a classic reference for professionals. Starting with coverage of the broader aspects of VSEPR, this volume narrows its focus to a succinct survey of the methods of structural determination. Additional topics include the applications of the VSEPR model and its theoretical basis. Helpful data on molecular geometries, bond lengths, and bond angles appear in tables and other graphics.