This book contains the papers developing out the presentations given at the International Conference organized by the Torino Academy of Sciences and the Department of Mathematics Giuseppe Peano of the Torino University to celebrate the 150th anniversary of G. Peano's birth - one of the greatest figures in modern mathematics and logic and the most important mathematical logician in Italy - a century after the publication of Formulario Mathematico, a great attempt to systematise Mathematics in symbolic form.
All students of mathematics know of Peano's postulates for the natural numbers and his famous space-filling curve, yet their knowledge often stops there. Part of the reason is that there has not until now been a full-scale study of his life and works. This must surely be surprising, when one realizes the length of his academic career (over 50 years) and the extent of his publica tions (over 200) in a wide variety of fields, many of which had immediate and long-term effects on the development of modern mathematics. A study of his life seems long overdue. It appeared to me that the most likely person to write a biography of Peano would be his devoted disciple Ugo Cassina, with whom I studied at the University of Milan in 1957-58. I wrote to Professor Cassina on 29 October, 1963, inquiring if he planned to write the biography, and I offered him my assistance, since I hoped to return to Italy for a year. He replied on 28 November, 1963, suggesting that we collaborate, meaning by this that I would write the biography, in English, using his material and advice. I gladly agreed to this suggestion, but work on the project had hardly begun when Professor Cassina died unexpectedly on 5 October, 1964. I then decided to continue the project on my own. I spent the academic year 1966-67 in Turin; completion of the book took ten years.
In the decade before 1900, the Italian mathematician Giuseppe Peano was one of the most original and influential pioneers of modern mathematical logic. He made significant contributions to the development of the foundations of mathematics and the axiomatic method (for example, his postulates for the natural numbers), dimension theory (including the space-filling curve), measure theory, vector analysis, differential equations, and the rigorization of analysis. Several of Peano's works have been translated into other languages; here for the first time is a generous selection of works translated into English. Fifteen articles, one booklet, and parts of two books and one monograph, published between 1883 and 1921, chosen with the interests of mathematicians and logicians in mind, are included. Each selection is preceded by an introductory note. The volume also contains a biographical sketch, a chronological list of Peano's publications (larger by one fifth than any previously published list), and a bibliography on the life and work of Peano. This selection will appeal especially to historians of mathematics and logic, but also to those mathematicians and logicians who wish to know more about how their subject came to be.
The information age owes its existence to a little-known but crucial development, the theoretical study of logic and the foundations of mathematics. The Great Formal Machinery Works draws on original sources and rare archival materials to trace the history of the theories of deduction and computation that laid the logical foundations for the digital revolution. Jan von Plato examines the contributions of figures such as Aristotle; the nineteenth-century German polymath Hermann Grassmann; George Boole, whose Boolean logic would prove essential to programming languages and computing; Ernst Schröder, best known for his work on algebraic logic; and Giuseppe Peano, cofounder of mathematical logic. Von Plato shows how the idea of a formal proof in mathematics emerged gradually in the second half of the nineteenth century, hand in hand with the notion of a formal process of computation. A turning point was reached by 1930, when Kurt Gödel conceived his celebrated incompleteness theorems. They were an enormous boost to the study of formal languages and computability, which were brought to perfection by the end of the 1930s with precise theories of formal languages and formal deduction and parallel theories of algorithmic computability. Von Plato describes how the first theoretical ideas of a computer soon emerged in the work of Alan Turing in 1936 and John von Neumann some years later. Shedding new light on this crucial chapter in the history of science, The Great Formal Machinery Works is essential reading for students and researchers in logic, mathematics, and computer science.
The book is a collection of the author’s selected works in the philosophy and history of logic and mathematics. Papers in Part I include both general surveys of contemporary philosophy of mathematics as well as studies devoted to specialized topics, like Cantor's philosophy of set theory, the Church thesis and its epistemological status, the history of the philosophical background of the concept of number, the structuralist epistemology of mathematics and the phenomenological philosophy of mathematics. Part II contains essays in the history of logic and mathematics. They address such issues as the philosophical background of the development of symbolism in mathematical logic, Giuseppe Peano and his role in the creation of contemporary logical symbolism, Emil L. Post's works in mathematical logic and recursion theory, the formalist school in the foundations of mathematics and the algebra of logic in England in the 19th century. The history of mathematics and logic in Poland is also considered. This volume is of interest to historians and philosophers of science and mathematics as well as to logicians and mathematicians interested in the philosophy and history of their fields.
Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical--that what is commonly called mathematics is simply later deductions from logical premises.
A straightforward guide to logic concepts Logic concepts are more mainstream than you may realize. There’s logic every place you look and in almost everything you do, from deciding which shirt to buy to asking your boss for a raise, and even to watching television, where themes of such shows as CSI and Numbers incorporate a variety of logistical studies. Logic For Dummies explains a vast array of logical concepts and processes in easy-to-understand language that make everything clear to you, whether you’re a college student of a student of life. You’ll find out about: Formal Logic Syllogisms Constructing proofs and refutations Propositional and predicate logic Modal and fuzzy logic Symbolic logic Deductive and inductive reasoning Logic For Dummies tracks an introductory logic course at the college level. Concrete, real-world examples help you understand each concept you encounter, while fully worked out proofs and fun logic problems encourage you students to apply what you’ve learned.
Calcolo Geometrico, G. Peano's first publication in mathematical logic, is a model of expository writing, with a significant impact on 20th century mathematics. Kannenberg's lucid and crisp translation, Geometric Calculus, will appeal to historians of mathematics, researchers, graduate students, and general readers interested in the foundations of mathematics and the development of a formal logical language. The book has never been reprinted in its entirety, and only two chapters have ever been translated into English. Readers of this valuable translation will gain insight into the work of a distinguished mathematician and founder of mathematical logic.
This work is a translation into English of the Third Edition of the classic German language work Mengenlehre by Felix Hausdorff published in 1937. From the Preface (1937): “The present book has as its purpose an exposition of the most important theorems of the theory of sets, along with complete proofs, so that the reader should not find it necessary to go outside this book for supplementary details while, on the other hand, the book should enable him to undertake a more detailed study of the voluminous literature on the subject. The book does not presuppose any mathematical knowledge beyond the differential and integral calculus, but it does require a certain maturity in abstract reasoning; qualified college seniors and first year graduate students should have no difficulty in making the material their own … The mathematician will … find in this book some things that will be new to him, at least as regards formal presentation and, in particular, as regards the strengthening of theorems, the simplification of proofs, and the removal of unnecessary hypotheses.”