Gibbs Measures and Phase Transitions

Gibbs Measures and Phase Transitions

Author: Hans-Otto Georgii

Publisher: Walter de Gruyter

Published: 2011

Total Pages: 561

ISBN-13: 3110250292

DOWNLOAD EBOOK

From a review of the first edition: "This book [...] covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics. [...] It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert." (F. Papangelou


Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems

Author: Sacha Friedli

Publisher: Cambridge University Press

Published: 2017-11-23

Total Pages: 643

ISBN-13: 1107184827

DOWNLOAD EBOOK

A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.


Gibbs Measures In Biology And Physics: The Potts Model

Gibbs Measures In Biology And Physics: The Potts Model

Author: Utkir A Rozikov

Publisher: World Scientific

Published: 2022-07-28

Total Pages: 367

ISBN-13: 9811251258

DOWNLOAD EBOOK

This book presents recently obtained mathematical results on Gibbs measures of the q-state Potts model on the integer lattice and on Cayley trees. It also illustrates many applications of the Potts model to real-world situations in biology, physics, financial engineering, medicine, and sociology, as well as in some examples of alloy behavior, cell sorting, flocking birds, flowing foams, and image segmentation.Gibbs measure is one of the important measures in various problems of probability theory and statistical mechanics. It is a measure associated with the Hamiltonian of a biological or physical system. Each Gibbs measure gives a state of the system.The main problem for a given Hamiltonian on a countable lattice is to describe all of its possible Gibbs measures. The existence of some values of parameters at which the uniqueness of Gibbs measure switches to non-uniqueness is interpreted as a phase transition.This book informs the reader about what has been (mathematically) done in the theory of Gibbs measures of the Potts model and the numerous applications of the Potts model. The main aim is to facilitate the readers (in mathematical biology, statistical physics, applied mathematics, probability and measure theory) to progress into an in-depth understanding by giving a systematic review of the theory of Gibbs measures of the Potts model and its applications.


Statistical Mechanics

Statistical Mechanics

Author: James Sethna

Publisher: OUP Oxford

Published: 2006-04-07

Total Pages: 374

ISBN-13: 0191566217

DOWNLOAD EBOOK

In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.


The Random-Cluster Model

The Random-Cluster Model

Author: Geoffrey R. Grimmett

Publisher: Springer Science & Business Media

Published: 2006-12-13

Total Pages: 392

ISBN-13: 3540328912

DOWNLOAD EBOOK

The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.


Probability on Graphs

Probability on Graphs

Author: Geoffrey Grimmett

Publisher: Cambridge University Press

Published: 2018-01-25

Total Pages: 279

ISBN-13: 1108542999

DOWNLOAD EBOOK

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.


Scale Invariance

Scale Invariance

Author: Annick LESNE

Publisher: Springer Science & Business Media

Published: 2011-11-04

Total Pages: 406

ISBN-13: 364215123X

DOWNLOAD EBOOK

During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.


Thermodynamic Formalism

Thermodynamic Formalism

Author: David Ruelle

Publisher: Cambridge University Press

Published: 2004-11-25

Total Pages: 198

ISBN-13: 9781139455282

DOWNLOAD EBOOK

Reissued in the Cambridge Mathematical Library this classic book outlines the theory of thermodynamic formalism which was developed to describe the properties of certain physical systems consisting of a large number of subunits. It is aimed at mathematicians interested in ergodic theory, topological dynamics, constructive quantum field theory, the study of certain differentiable dynamical systems, notably Anosov diffeomorphisms and flows. It is also of interest to theoretical physicists concerned with the conceptual basis of equilibrium statistical mechanics. The level of the presentation is generally advanced, the objective being to provide an efficient research tool and a text for use in graduate teaching. Background material on mathematics has been collected in appendices to help the reader. Extra material is given in the form of updates of problems that were open at the original time of writing and as a new preface specially written for this new edition by the author.


Convexity in the Theory of Lattice Gases

Convexity in the Theory of Lattice Gases

Author: Robert B. Israel

Publisher: Princeton University Press

Published: 2015-03-08

Total Pages: 257

ISBN-13: 1400868424

DOWNLOAD EBOOK

In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses a version of a theorem by Bishop and Phelps to obtain existence results for phase transitions. Furthermore, he shows how the Gibbs Phase Rule and the existence of a wide variety of phase transitions follow from the general framework and the theory of convex functions. While the behavior of some of these phase transitions is very "pathological," others exhibit more "reasonable" behavior. As an example, the author considers the isotropic Heisenberg model. Formulating a version of the Gibbs Phase Rule using Hausdorff dimension, he shows that the finite dimensional subspaces satisfying this phase rule are generic. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Phase Transitions in Foods

Phase Transitions in Foods

Author: Yrjö H. Roos

Publisher: Academic Press

Published: 1995-06-12

Total Pages: 375

ISBN-13: 0080538738

DOWNLOAD EBOOK

Assembling recent research and theories, this book describes the phase and state transitions that affect technological properties of biological materials occurring in food processing and storage. It covers the role of water as a plasticizer, the effect of transitions on mechanical and chemical changes, and the application of modeling in predicting stability rates of changes. The volume presents methods for detecting changes in the physical state and various techniques used to analyze phase behavior of biopolymers and food components. This book should become a valuable resource for anyone involved with food engineering, processing, storage, and quality, as well as those working on related properties of pharmaceuticals and other biopolymers. - Contains descriptions of nonfat food solids as"biopolymers"which exhibit physical properties that are highly dependent on temperature, time, and water content - Details the effects of water on the state and stability of foods - Includes information on changes occuring in state and physicochemical properties during processing and storage - The only book on phase and state transitions written specifically for the applications in food industry, product development, and research - No recent competition