This book provides an annotated English translation of Gerard of Cremona's Latin version of Book I of al-Nayrizi's Commentary on Euclid's Elements. Lo Bello concludes with a critical analysis of the idiosyncrasies of Gerard's method of translation.
The Commentary of al-Nayrizi (circa 920) on Euclid s "Elements of Geometry" occupies an important place both in the history of mathematics and of philosophy, particularly Islamic philosophy. It is a compilation of original work by al-Nayrizi and of translations and commentaries made by others, such as Heron. It is the most influential Arabic mathematical manuscript in existence and a principle vehicle whereby mathematics was reborn in the Latin West. Furthermore, the Commentary on Euclid by the Platonic philosopher Simplicius, entirely reproduced by al-Nayrizi, and nowhere else extant, is essential to the study of the attempt to prove Euclid s Fifth Postulate from the preceding four. Al-Nayrizi was one of the two main sources from which Albertus Magnus (1193-1280), the Doctor Universalis, learned mathematics. This work presents an annotated English translation of Books II-IV and of a hitherto lost portion of Book I.
The Commentary of al-Nayrizi (circa 920) on Euclid’s Elements of Geometry occupies an important place both in the history of mathematics and of philosophy, particularly Islamic philosophy. It is a compilation of original work by al-Nayrizi and of translations and commentaries made by others, such as Heron. It is the most influential Arabic mathematical manuscript in existence and a principle vehicle whereby mathematics was reborn in the Latin West. Furthermore, the Commentary on Euclid by the Platonic philosopher Simplicius, entirely reproduced by al-Nayrizi, and nowhere else extant, is essential to the study of the attempt to prove Euclid’s Fifth Postulate from the preceding four. Al-Nayrizi was one of the two main sources from which Albertus Magnus (1193-1280), the Doctor Universalis, learned mathematics. This work presents an annotated English translation of Books II-IV and of a hitherto lost portion of Book I.
Dieses Buch bietet, erstmals in englischer Sprache, eine Zusammenschau der modernen Forschung zu Simplikios' Leben und drei seiner funf Kommentare: Zu Epictetus' Encheiridion, zu Aristoteles' De anima und zu Aristoteles' Kategorien. Der biografische Teil bringt die historische Rolle dieses neoplatonischen Philosophen ans Licht. Geboren in Kilikien, Kleinasien, studierte er in Alexandria und Athen und beendete offenbar sein Leben in Syrien an der Grenze zwischen dem byzantinischen und sassanidischen Reich. Er war ein Vermittler zwischen der griechisch-romischen und der syrischen Philosophie, die die arabische Philosophie zu Beginn nahren sollte. Der zweite Teil des Buches, der sich mit Fragen der Lehre und der Autorschaft befasst, widmet sich auch dem zugrunde liegenden padagogischen Curriculum und den Methoden, die neoplatonischen Kommentaren eigen sind, die moderne Interpretation in Studien uber Simplicius und andere Neoplatonisten nur zu gerne ubersehen.
On the occasion of the 75th +1 anniversary of the publication of Prof. J. M. Millàs Vallicrosa’s seminal work Assaig d’història de les idees físiques i matemàtiques a la Catalunya medieval by the Institut d'Estudis Catalans, the Commission on the History of Science and Technology in Islamic Societies (International Union on History and Philosophy of Science), the Grup Millàs Vallicrosa d’Història de la Ciència Àrab (Universitat de Barcelona) and the Societat Catalana d’Història de la Ciència i de la Tècnica (Institut d’Estudis Catalans) organized a conference entitled “A Shared Legacy: Islamic Science East and West”. At this conference, the Islamic Scientific Manuscripts Initiative, a new joint project for the study of manuscripts, was presented. .Although the papers published in this volume deal with a mixture of subjects and disciplines - astronomical instruments, planetary models, geometry, medicine, miqat, technology and cartography - they all have the transmission of knowledge between the two shores of the Mediterranean as a common underlying thread...Amb motiu del 75è + 1 aniversari de la publicació del llibre Assaig d’història de les idees físiques i matemàtiques a la Catalunya medieval (IEC), la Commission on the History of Science and Technology in Islamic Societies (CHSTIS/IUPHS), el Grup Millàs Vallicrosa d’Història de la Ciència Àrab de la Universitat de Barcelona (UB) i la Societat Catalana d’Història de la Ciència i de la Tècnica (SCHCT) -filial de l’Institut d’Estudis Catalans- organitzaren el congrés A Shared Legacy. Islamic Science East and West (Un llegat compartit: ciència islàmica a orient i occident). .Am motiu d’aquesta trobada s’han recopilat els articles que conté aquest volum tracten de temes variats –instruments astronòmics, models planetaris, geometria, medicina, tecnologia, cartografia, etc.- que tenen com a nexe en comú la transmissió del coneixement entre les dues ribes de la Mediterrània.
In this volume of conference papers originally presented at the University of Oklahoma, a distinguished group of scholars examines episodes in the transmission of premodern science and provides new insights into its cultural, philosophical and historical significance.
The contributors and their methods are diverse. Their papers deal with subjects such as anamorphic art, the geometry of Durer, musical works of Mozart and Beethoven, the history of negative numbers, the development of mathematical notation, and efforts to bring mathematics to bear on problems in commerce and engineering. All papers have English summaries. This book provides historians of mathematics or mathematicians with an interest in history with an overview of the methods, concerns, and results of research in the history of mathematics as it stands today.
The aim of this book is to explain the shape of Greek mathematical thinking. It can be read on three levels: as a description of the practices of Greek mathematics; as a theory of the emergence of the deductive method; and as a case-study for a general view on the history of science. The starting point for the enquiry is geometry and the lettered diagram. Reviel Netz exploits the mathematicians' practices in the construction and lettering of their diagrams, and the continuing interaction between text and diagram in their proofs, to illuminate the underlying cognitive processes. A close examination of the mathematical use of language follows, especially mathematicians' use of repeated formulae. Two crucial chapters set out to show how mathematical proofs are structured and explain why Greek mathematical practice manages to be so satisfactory. A final chapter looks into the broader historical setting of Greek mathematical practice.