Geometry, Structure and Randomness in Combinatorics

Geometry, Structure and Randomness in Combinatorics

Author: Jiří Matousek

Publisher: Springer

Published: 2015-04-09

Total Pages: 156

ISBN-13: 887642525X

DOWNLOAD EBOOK

​This book collects some surveys on current trends in discrete mathematics and discrete geometry. The areas covered include: graph representations, structural graphs theory, extremal graph theory, Ramsey theory and constrained satisfaction problems.


Geometric Etudes in Combinatorial Mathematics

Geometric Etudes in Combinatorial Mathematics

Author: Alexander Soifer

Publisher: Springer Science & Business Media

Published: 2010-06-15

Total Pages: 292

ISBN-13: 0387754695

DOWNLOAD EBOOK

Geometric Etudes in Combinatorial Mathematics is not only educational, it is inspirational. This distinguished mathematician captivates the young readers, propelling them to search for solutions of life’s problems—problems that previously seemed hopeless. Review from the first edition: The etudes presented here are not simply those of Czerny, but are better compared to the etudes of Chopin, not only technically demanding and addressed to a variety of specific skills, but at the same time possessing an exceptional beauty that characterizes the best of art...Keep this book at hand as you plan your next problem solving seminar. —The American Mathematical Monthly


Structure and Randomness

Structure and Randomness

Author: Terence Tao

Publisher: American Mathematical Soc.

Published:

Total Pages: 316

ISBN-13: 9780821886281

DOWNLOAD EBOOK

"In 2007, Terry Tao began a mathematical blog, as an outgrowth of his own website at UCLA. This book is based on a selection of articles from the first year of that blog. These articles discuss a wide range of mathematics and its applications, ranging from expository articles on quantum mechanics, Einstein's equation E = mc[superscript 2], or compressed sensing, to open problems in analysis, combinatorics, geometry, number theory, and algebra, to lecture series on random matrices, Fourier analysis, or the dichotomy between structure and randomness that is present in many subfields of mathematics, to more philosophical discussions on such topics as the interplay between finitary and infinitary in analysis. Some selected commentary from readers of the blog has also been included at the end of each article.


Combinatorics and Finite Geometry

Combinatorics and Finite Geometry

Author: Steven T. Dougherty

Publisher: Springer Nature

Published: 2020-10-30

Total Pages: 374

ISBN-13: 3030563952

DOWNLOAD EBOOK

This undergraduate textbook is suitable for introductory classes in combinatorics and related topics. The book covers a wide range of both pure and applied combinatorics, beginning with the very basics of enumeration and then going on to Latin squares, graphs and designs. The latter topic is closely related to finite geometry, which is developed in parallel. Applications to probability theory, algebra, coding theory, cryptology and combinatorial game theory comprise the later chapters. Throughout the book, examples and exercises illustrate the material, and the interrelations between the various topics is emphasized. Readers looking to take first steps toward the study of combinatorics, finite geometry, design theory, coding theory, or cryptology will find this book valuable. Essentially self-contained, there are very few prerequisites aside from some mathematical maturity, and the little algebra required is covered in the text. The book is also a valuable resource for anyone interested in discrete mathematics as it ties together a wide variety of topics.


Groups, Combinatorics and Geometry

Groups, Combinatorics and Geometry

Author: Martin W. Liebeck

Publisher: Cambridge University Press

Published: 1992-09-10

Total Pages: 505

ISBN-13: 0521406854

DOWNLOAD EBOOK

This volume contains a collection of papers on the subject of the classification of finite simple groups.


Random Graphs, Geometry and Asymptotic Structure

Random Graphs, Geometry and Asymptotic Structure

Author: Michael Krivelevich

Publisher: Cambridge University Press

Published: 2016-04-25

Total Pages: 129

ISBN-13: 1107136571

DOWNLOAD EBOOK

A concise introduction, aimed at young researchers, to recent developments of a geometric and topological nature in random graphs.


Graphs and Geometry

Graphs and Geometry

Author: László Lovász

Publisher: American Mathematical Soc.

Published: 2019-08-28

Total Pages: 458

ISBN-13: 1470450879

DOWNLOAD EBOOK

Graphs are usually represented as geometric objects drawn in the plane, consisting of nodes and curves connecting them. The main message of this book is that such a representation is not merely a way to visualize the graph, but an important mathematical tool. It is obvious that this geometry is crucial in engineering, for example, if you want to understand rigidity of frameworks and mobility of mechanisms. But even if there is no geometry directly connected to the graph-theoretic problem, a well-chosen geometric embedding has mathematical meaning and applications in proofs and algorithms. This book surveys a number of such connections between graph theory and geometry: among others, rubber band representations, coin representations, orthogonal representations, and discrete analytic functions. Applications are given in information theory, statistical physics, graph algorithms and quantum physics. The book is based on courses and lectures that the author has given over the last few decades and offers readers with some knowledge of graph theory, linear algebra, and probability a thorough introduction to this exciting new area with a large collection of illuminating examples and exercises.


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


Combinatorics and Graph Theory

Combinatorics and Graph Theory

Author: John Harris

Publisher: Springer Science & Business Media

Published: 2009-04-03

Total Pages: 392

ISBN-13: 0387797114

DOWNLOAD EBOOK

These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.


Additive Combinatorics

Additive Combinatorics

Author: Terence Tao

Publisher: Cambridge University Press

Published: 2006-09-14

Total Pages: 18

ISBN-13: 1139458345

DOWNLOAD EBOOK

Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.