Geometry, Particles, and Fields

Geometry, Particles, and Fields

Author: Bjoern Felsager

Publisher: Springer Science & Business Media

Published: 1998-01-09

Total Pages: 686

ISBN-13: 0387982671

DOWNLOAD EBOOK

Geometry, Particles and Fields is a direct reprint of the first edition. From a review of the first edition: "The present volume is a welcome edition to the growing number of books that develop geometrical language and use it to describe new developments in particle physics...It provides clear treatment that is accessible to graduate students with a knowledge of advanced calculus and of classical physics...The second half of the book deals with the principles of differential geometry and its applications, with a mathematical machinery of very wide range. Here clear line drawings and illustrations supplement the multitude of mathematical definitions. This section, in its clarity and pedagogy, is reminiscent of Gravitation by Charles Misner, Kip Thorne and John Wheeler...Felsager gives a very clear presentation of the use of geometric methods in particle physics...For those who have resisted learning this new language, his book provides a very good introduction as well as physical motivation. The inclusion of numerous exercises, worked out, renders the book useful for independent study also. I hope this book will be followed by others from authors with equal flair to provide a readable excursion into the next step." PHYSICS TODAY Bjoern Felsager is a high school teacher in Copenhagen. Educated at the Niels Bohr Institute, he has taught at the Universities of Copenhagen and Odense.


Geometry, Particles, and Fields

Geometry, Particles, and Fields

Author: Bjørn Felsager

Publisher:

Published: 1981

Total Pages: 668

ISBN-13:

DOWNLOAD EBOOK

Teil 1: Basic properties of particles and fields. Teil 2: Basic principles and applications of differential geometry


Noncommutative Geometry and Particle Physics

Noncommutative Geometry and Particle Physics

Author: Walter D. van Suijlekom

Publisher: Springer

Published: 2014-07-21

Total Pages: 246

ISBN-13: 9401791627

DOWNLOAD EBOOK

This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.


Introduction to the Classical Theory of Particles and Fields

Introduction to the Classical Theory of Particles and Fields

Author: Boris Kosyakov

Publisher: Springer Science & Business Media

Published: 2007-07-11

Total Pages: 486

ISBN-13: 3540409343

DOWNLOAD EBOOK

This volume is intended as a systematic introduction to gauge field theory for advanced undergraduate and graduate students in high energy physics. The discussion is restricted to the classical (non-quantum) theory in Minkowski spacetime. Particular attention has been given to conceptual aspects of field theory, accurate definitions of basic physical notions, and thorough analysis of exact solutions to the equations of motion for interacting systems.


Modern Differential Geometry in Gauge Theories

Modern Differential Geometry in Gauge Theories

Author: Anastasios Mallios

Publisher: Springer Science & Business Media

Published: 2006-07-27

Total Pages: 303

ISBN-13: 0817644741

DOWNLOAD EBOOK

This is original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable


Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives

Author: Alain Connes

Publisher: American Mathematical Soc.

Published: 2019-03-13

Total Pages: 810

ISBN-13: 1470450453

DOWNLOAD EBOOK

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.


New Horizons In Differential Geometry And Its Related Fields

New Horizons In Differential Geometry And Its Related Fields

Author: Toshiaki Adachi

Publisher: World Scientific

Published: 2022-04-07

Total Pages: 257

ISBN-13: 9811248117

DOWNLOAD EBOOK

This volume presents recent developments in geometric structures on Riemannian manifolds and their discretizations. With chapters written by recognized experts, these discussions focus on contact structures, Kähler structures, fiber bundle structures and Einstein metrics. It also contains works on the geometric approach on coding theory.For researchers and students, this volume forms an invaluable source to learn about these subjects that are not only in the field of differential geometry but also in other wide related areas. It promotes and deepens the study of geometric structures.


Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes)

Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes)

Author: Gerhard Grensing

Publisher: World Scientific

Published: 2021-07-15

Total Pages: 1656

ISBN-13: 9811237093

DOWNLOAD EBOOK

The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.


Geometric Approaches to Quantum Field Theory

Geometric Approaches to Quantum Field Theory

Author: Kieran Finn

Publisher: Springer Nature

Published: 2021-10-07

Total Pages: 212

ISBN-13: 3030852695

DOWNLOAD EBOOK

The ancient Greeks believed that everything in the Universe should be describable in terms of geometry. This thesis takes several steps towards realising this goal by introducing geometric descriptions of systems such as quantum gravity, fermionic particles and the origins of the Universe itself. The author extends the applicability of previous work by Vilkovisky, DeWitt and others to include theories with spin 1⁄2 and spin 2 degrees of freedom. In addition, he introduces a geometric description of the potential term in a quantum field theory through a process known as the Eisenhart lift. Finally, the methods are applied to the theory of inflation, where they show how geometry can help answer a long-standing question about the initial conditions of the Universe. This publication is aimed at graduate and advanced undergraduate students and provides a pedagogical introduction to the exciting topic of field space covariance and the complete geometrization of quantum field theory.