The theorems and principles of basic geometry are clearly presented in this workbook, along with examples and exercises for practice. All concepts are explained in an easy-to-understand fashion to help students grasp geometry and form a solid foundation for advanced learning in mathematics. Each page introduces a new concept, along with a puzzle or riddle which reveals a fun fact. Thought-provoking exercises encourage students to enjoy working the pages while gaining valuable practice in geometry.
Introduce basic terms and concepts with hands-on projects, wall charts, flash cards and math art pages. The comprehensive Math Phonics program uses rules, patterns and memory techniques similar to those found in language arts phonics and provides alternative or supplemental materials to help students understand, learn, appreciate and enjoy geometry. Also includes word problems and a section on metrics.
The theorems and principles of basic geometry are clearly presented in this workbook, along with examples and exercises for practice. All concepts are explained in an easy-to-understand fashion to help students grasp geometry and form a solid foundation for advanced learning in mathematics. Each page introduces a new concept, along with a puzzle or riddle which reveals a fun fact. Thought-provoking exercises encourage students to enjoy working the pages while gaining valuable practice in geometry.
This easy-to-use workbook is chock full of stimulating activities that will jumpstart your students' interest in geometry while providing practice with the major geometry concepts. A variety of puzzles, mazes, games, and self-check formats will challenge students to think creatively as they sharpen their geometry skills. Each page begins with a clear explanation of the featured geometry topic, providing extra review and reinforcement. A special assessment section is included at the end of the book to help students prepare for standardized tests. 48 pages
Harold Jacobs’s Geometry created a revolution in the approach to teaching this subject, one that gave rise to many ideas now seen in the NCTM Standards. Since its publication nearly one million students have used this legendary text. Suitable for either classroom use or self-paced study, it uses innovative discussions, cartoons, anecdotes, examples, and exercises that unfailingly capture and hold student interest. This edition is the Jacobs for a new generation. It has all the features that have kept the text in class by itself for nearly 3 decades, all in a thoroughly revised, full-color presentation that shows today’s students how fun geometry can be. The text remains proof-based although the presentation is in the less formal paragraph format. The approach focuses on guided discovery to help students develop geometric intuition.
Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries.
Graphs are usually represented as geometric objects drawn in the plane, consisting of nodes and curves connecting them. The main message of this book is that such a representation is not merely a way to visualize the graph, but an important mathematical tool. It is obvious that this geometry is crucial in engineering, for example, if you want to understand rigidity of frameworks and mobility of mechanisms. But even if there is no geometry directly connected to the graph-theoretic problem, a well-chosen geometric embedding has mathematical meaning and applications in proofs and algorithms. This book surveys a number of such connections between graph theory and geometry: among others, rubber band representations, coin representations, orthogonal representations, and discrete analytic functions. Applications are given in information theory, statistical physics, graph algorithms and quantum physics. The book is based on courses and lectures that the author has given over the last few decades and offers readers with some knowledge of graph theory, linear algebra, and probability a thorough introduction to this exciting new area with a large collection of illuminating examples and exercises.
This work takes a close look at a broad range of 20th-century examples of design, architecture and illustration, revealing underlying geometric structures in their compositions.