Geometrical Charged-Particle Optics

Geometrical Charged-Particle Optics

Author: Harald Rose

Publisher: Springer

Published: 2013-02-02

Total Pages: 519

ISBN-13: 3642321194

DOWNLOAD EBOOK

This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton’s principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern-Gerlach effect is revisited for atomic and free electrons.


Geometrical Charged-Particle Optics

Geometrical Charged-Particle Optics

Author: Harald H. Rose

Publisher: Springer Science & Business Media

Published: 2009

Total Pages: 422

ISBN-13: 3540859152

DOWNLOAD EBOOK

This resource covering all theoretical aspects of modern geometrical charged-particle optics is aimed at anyone involved in the design of electron optical instruments and beam-guiding systems for charged particles.


Charged Particle Optics Theory

Charged Particle Optics Theory

Author: Timothy R. Groves

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 369

ISBN-13: 1482229951

DOWNLOAD EBOOK

Charged Particle Optics Theory: An Introduction identifies the most important concepts of charged particle optics theory, and derives each mathematically from the first principles of physics. Assuming an advanced undergraduate-level understanding of calculus, this book follows a logical progression, with each concept building upon the preceding one. Beginning with a non-mathematical survey of the optical nature of a charged particle beam, the text: Discusses both geometrical and wave optics, as well as the correspondence between them Describes the two-body scattering problem, which is essential to the interaction of a fast charged particle with matter Introduces electron emission as a practical consequence of quantum mechanics Addresses the Fourier transform and the linear second-order differential equation Includes problems to amplify and fill in the theoretical details, with solutions presented separately Charged Particle Optics Theory: An Introduction makes an ideal textbook as well as a convenient reference on the theoretical origins of the optics of charged particle beams. It is intended to prepare the reader to understand the large body of published research in this mature field, with the end result translated immediately to practical application.


Electron and Ion Optics

Electron and Ion Optics

Author: Miklos Szilagyi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 550

ISBN-13: 1461309239

DOWNLOAD EBOOK

The field of electron and ion optics is based on the analogy between geometrical light optics and the motion of charged particles in electromagnetic fields. The spectacular development of the electron microscope clearly shows the possibilities of image formation by charged particles of wavelength much shorter than that of visible light. As new applications such as particle accelerators, cathode ray tubes, mass and energy spectrometers, microwave tubes, scanning-type analytical instruments, heavy beam technologies, etc. emerged, the scope of particle beam optics has been exten ded to the formation of fine probes. The goal is to concentrate as many particles as possible in as small a volume as possible. Fabrication of microcircuits is a good example of the growing importance of this field. The current trend is towards increased circuit complexity and pattern density. Because of the diffraction limitation of processes using optical photons and the technological difficulties connected with x-ray processes, charged particle beams are becoming popular. With them it is possible to write directly on a wafer under computer control, without using a mask. Focused ion beams offer especially great possibilities in the submicron region. Therefore, electron and ion beam technologies will most probably playa very important role in the next twenty years or so.


Quantum Mechanics of Charged Particle Beam Optics: Understanding Devices from Electron Microscopes to Particle Accelerators

Quantum Mechanics of Charged Particle Beam Optics: Understanding Devices from Electron Microscopes to Particle Accelerators

Author: Ramaswamy Jagannathan

Publisher: CRC Press

Published: 2019-05-20

Total Pages: 297

ISBN-13: 1351868268

DOWNLOAD EBOOK

Classical Charged Particle Beam Optics used in the design and operation of all present-day charged particle beam devices, from low energy electron microscopes to high energy particle accelerators, is entirely based on classical mechanics. A question of curiosity is: How is classical charged particle beam optics so successful in practice though the particles of the beam, like electrons, are quantum mechanical? Quantum Mechanics of Charged Particle Beam Optics answers this question with a comprehensive formulation of ‘Quantum Charged Particle Beam Optics’ applicable to any charged particle beam device.


Principles of Electron Optics, Volume 2

Principles of Electron Optics, Volume 2

Author: Peter W. Hawkes

Publisher: Academic Press

Published: 2017-12-13

Total Pages: 767

ISBN-13: 0128134054

DOWNLOAD EBOOK

Principles of Electron Optics: Applied Geometrical Optics, Second Edition gives detailed information about the many optical elements that use the theory presented in Volume 1: electrostatic and magnetic lenses, quadrupoles, cathode-lens-based instruments including the new ultrafast microscopes, low-energy-electron microscopes and photoemission electron microscopes and the mirrors found in their systems, Wien filters and deflectors. The chapter on aberration correction is largely new. The long section on electron guns describes recent theories and covers multi-column systems and carbon nanotube emitters. Monochromators are included in the section on curved-axis systems. The lists of references include many articles that will enable the reader to go deeper into the subjects discussed in the text. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography. - Offers a fully revised and expanded new edition based on the latest research developments in electron optics - Written by the top experts in the field - Covers every significant advance in electron optics since the subject originated - Contains exceptionally complete and carefully selected references and notes - Serves both as a reference and text


Focusing of Charged Particles V2

Focusing of Charged Particles V2

Author: Albert Septier

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 487

ISBN-13: 0323148468

DOWNLOAD EBOOK

Focusing of Charged Particles, Volume II presents the aspects of particle optics, including the electron, the ion optical domains, and the accelerator field. This book provides a detailed analysis of the principles of the laws of propagation of beams. Comprised of three parts encompassing three chapters, this volume starts with an overview of how a beam of charged particles traverses a region that is at a uniform, constant, electrostatic potential. This book then discusses the principle of charge repulsion effect by which the space charge of the beam modifies the potential in the region that it traverses. Other chapters examine the general design techniques and performances obtainable for electron guns applicable for use in initiating a beam for linear beam tubes that is given in a condensed form. The last chapter deals with the two stable charged particles that can be accelerated, namely, protons and electrons. This book is a valuable resource to physicists, accelerator experts, and experimenters in search of interactions in the detector target.


Advanced Transmission Electron Microscopy

Advanced Transmission Electron Microscopy

Author: Jian Min Zuo

Publisher: Springer

Published: 2016-10-26

Total Pages: 741

ISBN-13: 1493966073

DOWNLOAD EBOOK

This volume expands and updates the coverage in the authors' popular 1992 book, Electron Microdiffraction. As the title implies, the focus of the book has changed from electron microdiffraction and convergent beam electron diffraction to all forms of advanced transmission electron microscopy. Special attention is given to electron diffraction and imaging, including high-resolution TEM and STEM imaging, and the application of these methods to crystals, their defects, and nanostructures. The authoritative text summarizes and develops most of the useful knowledge which has been gained over the years from the study of the multiple electron scattering problem, the recent development of aberration correctors and their applications to materials structure characterization, as well as the authors' extensive teaching experience in these areas. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience is ideal for use as an advanced undergraduate or graduate level text in support of course materials in Materials Science, Physics or Chemistry departments.


Springer Handbook of Microscopy

Springer Handbook of Microscopy

Author: Peter W. Hawkes

Publisher: Springer Nature

Published: 2019-11-02

Total Pages: 1561

ISBN-13: 3030000699

DOWNLOAD EBOOK

This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.


Aberration-corrected Imaging In Transmission Electron Microscopy: An Introduction (2nd Edition)

Aberration-corrected Imaging In Transmission Electron Microscopy: An Introduction (2nd Edition)

Author: Rolf Erni

Publisher: World Scientific Publishing Company

Published: 2015-03-23

Total Pages: 432

ISBN-13: 1783265302

DOWNLOAD EBOOK

Aberration-Corrected Imaging in Transmission Electron Microscopy provides an introduction to aberration-corrected atomic-resolution electron microscopy imaging in materials and physical sciences. It covers both the broad beam transmission mode (TEM; transmission electron microscopy) and the scanning transmission mode (STEM; scanning transmission electron microscopy). The book is structured in three parts. The first part introduces the basics of conventional atomic-resolution electron microscopy imaging in TEM and STEM modes. This part also describes limits of conventional electron microscopes and possible artefacts which are caused by the intrinsic lens aberrations that are unavoidable in such instruments. The second part introduces fundamental electron optical concepts and thus provides a brief introduction to electron optics. Based on the first and second parts of the book, the third part focuses on aberration correction; it describes the various aberrations in electron microscopy and introduces the concepts of spherical aberration correctors and advanced aberration correctors, including correctors for chromatic aberration. This part also provides guidelines on how to optimize the imaging conditions for atomic-resolution STEM and TEM imaging.This second edition has been completely revised and updated in order to incorporate the very recent technological and scientific achievements that have been realized since the first edition appeared in 2010.