Modern Geometrical Optics

Modern Geometrical Optics

Author: Richard Ditteon

Publisher: Wiley-Interscience

Published: 1997-11-03

Total Pages: 0

ISBN-13: 9780471169222

DOWNLOAD EBOOK

From basic terms and concepts to advanced optimization techniques-a complete, practical introduction to modern geometrical optics Most books on geometrical optics present only matrix methods. Modern Geometrical Optics, although it covers matrix methods, emphasizes y-nu ray tracing methods, which are used most commonly by optical engineers and are easier to adapt to third-order optics and y-??? diagrams. Moving by logical degrees from fundamental principles to advanced optical analysis and design methods, this book bridges the gap between the optical theory taught in introductory physics texts and advanced books on lens design. Providing the background material needed to understand advanced material, it covers important topics such as field of view, stops, pupils and windows, exact ray tracing, image quality, and optimization of the image. Important features of Modern Geometrical Optics include: * Examples of all important techniques presented * Extensive problem sets in each chapter * Optical analysis and design software * Chapters covering y-??? diagrams, optimization, and lens design This book is both a primer for professionals called upon to design optical systems and an ideal text for courses in modern geometrical optics. Companion Software Special lens design and analysis software capable of solving all problems presented in the book is available via Wiley's FTP site. This software also serves as an introduction to the use of commercial lens design software. Appendix C is a user's manual for the software.


Introduction to Geometrical Optics

Introduction to Geometrical Optics

Author: Milton Katz

Publisher: World Scientific

Published: 2002

Total Pages: 332

ISBN-13: 9789812382245

DOWNLOAD EBOOK

This book is the culmination of twenty-five years of teaching Geometrical Optics. The volume is organised such that the single spherical refracting surface is the basic optical element. Spherical mirrors are treated as special cases of refraction, with the same applicable equations. Thin lens equations follow as combinations of spherical refracting surfaces while the cardinal points of the thick lens make it equivalent to a thin lens. Ultimately, one set of vergence equations are applicable to all these elements.The chapters are devoted to in-depth treatments of stops, pupils and ports; magnifiers, microscopes, telescopes, and camera lenses; ophthalmic instruments; resolving power and MTF; trigonometric ray tracing; and chromatic and monochromatic aberrations. There are over 100 worked examples, 400 homework problems and 400 illustrations.First published in 1994 by Penumbra Publishing Co.


Field Guide to Geometrical Optics

Field Guide to Geometrical Optics

Author: John E. Greivenkamp

Publisher: Society of Photo Optical

Published: 2004

Total Pages: 117

ISBN-13: 9780819452948

DOWNLOAD EBOOK

This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.


Fundamentals of Geometrical Optics

Fundamentals of Geometrical Optics

Author: Virendra N. Mahajan

Publisher: Society of Photo Optical

Published: 2014-06-03

Total Pages: 472

ISBN-13: 9780819499981

DOWNLOAD EBOOK

Optical imaging starts with geometrical optics, and ray tracing lies at its forefront. This book starts with Fermat’s principle and derives the three laws of geometrical optics from it. After discussing imaging by refracting and reflecting systems, paraxial ray tracing is used to determine the size of imaging elements and obscuration in mirror systems. Stops, pupils, radiometry, and optical instruments are also discussed. The chromatic and monochromatic aberrations are addressed in detail, followed by spot sizes and spot diagrams of aberrated images of point objects. Each chapter ends with a summary and a set of problems. The book ends with an epilogue that summarizes the imaging process and outlines the next steps within and beyond geometrical optics.


Geometric Optics

Geometric Optics

Author: Antonio Romano

Publisher: Birkhäuser

Published: 2016-09-26

Total Pages: 289

ISBN-13: 3319437321

DOWNLOAD EBOOK

This book—unique in the literature—provides readers with the mathematical background needed to design many of the optical combinations that are used in astronomical telescopes and cameras. The results presented in the work were obtained by using a different approach to third-order aberration theory as well as the extensive use of the software package Mathematica®. Replete with workout examples and exercises, Geometric Optics is an excellent reference for advanced graduate students, researchers, and practitioners in applied mathematics, engineering, astronomy, and astronomical optics. The work may be used as a supplementary textbook for graduate-level courses in astronomical optics, optical design, optical engineering, programming with Mathematica, or geometric optics.


Geometric Optics on Phase Space

Geometric Optics on Phase Space

Author: Kurt Bernardo Wolf

Publisher: Springer Science & Business Media

Published: 2004-07-21

Total Pages: 400

ISBN-13: 9783540220398

DOWNLOAD EBOOK

Symplectic geometry, well known as the basic structure of Hamiltonian mechanics, is also the foundation of optics. In fact, optical systems (geometric or wave) have an even richer symmetry structure than mechanical ones (classical or quantum). The symmetries underlying the geometric model of light are based on the symplectic group. Geometric Optics on Phase Space develops both geometric optics and group theory from first principles in their Hamiltonian formulation on phase space. This treatise provides the mathematical background and also collects a host of useful methods of practical importance, particularly the fractional Fourier transform currently used for image processing. The reader will appreciate the beautiful similarities between Hamilton's mechanics and this approach to optics. The appendices link the geometry thus introduced to wave optics through Lie methods. The book addresses researchers and graduate students.


Geometric, Physical, and Visual Optics

Geometric, Physical, and Visual Optics

Author: Michael P. Keating

Publisher: Elsevier Health Sciences

Published: 1988-06-06

Total Pages: 594

ISBN-13: 148328946X

DOWNLOAD EBOOK

A basic optics textbook that integrates relevant visual and ophthalmic optics material with basic geometric and physical optics. Dr. Keating's book uses the vergence approach to optics as well as the wavefront approach to vergence as an aid to developing optics intuition.


A Practical Guide to Experimental Geometrical Optics

A Practical Guide to Experimental Geometrical Optics

Author: Yuriy A. Garbovskiy

Publisher: Cambridge University Press

Published: 2017-12-28

Total Pages: 241

ISBN-13: 110717094X

DOWNLOAD EBOOK

A concise, yet deep introduction to geometrical optics, developing the practical skills and research techniques routinely used in modern laboratories. Suitable for both students and self-learners, this accessible text teaches readers how to build their own optical laboratory, and design and perform optical experiments.


Geometrical Optics

Geometrical Optics

Author: George Asimellis

Publisher:

Published: 2019

Total Pages:

ISBN-13: 9781510619456

DOWNLOAD EBOOK

"This second volume of the series Lectures in Optics provides a comprehensive presentation of the Geometrical Optics effects. It discusses refraction and reflection off a single surface, flat and spherical. Then the essential building elements of optical power and beam vergence are presented: their importance is paramount in imaging, since the incident vergence is added to the element's power to produce the beam vergence leaving the optical element. Hence, imaging definitions and formulation are produced. The book then presents analytically all possible imaging arrangements with a single element, single lens, and a mirror. Then we proceed to add two more parameters: the extent of an element along the optical axis (thick lenses and lens systems) and the extent of an element perpendicular to the optical axis (stops and pupils). The ramifications on image quality due to the transverse restriction of light are presented, such as resolution and image blur. Finally, the book introduces the concepts of optical aberrations"--


The Geometrical Optics Workbook

The Geometrical Optics Workbook

Author: David S. Loshin

Publisher: Elsevier Health Sciences

Published: 2015-01-28

Total Pages: 221

ISBN-13: 1483293653

DOWNLOAD EBOOK

This workbook is designed to supplement optics textbooks and covers all the traditional topics of geometrical optics. Terms, equations, definitions, and concepts are discussed briefly and explained through a series of problems that are worked out in a step-by-step manner which simplifies the problem-solving process. Additional practice problems are provided at the end of each chapter.* - An indispensable tool when studying for the state and National Boards * - An ideal supplement to optics textbooks * - Covers the traditional topics of geometrical optics.