Geometric Measure Theory

Geometric Measure Theory

Author: Herbert Federer

Publisher: Springer

Published: 2014-11-25

Total Pages: 694

ISBN-13: 3642620108

DOWNLOAD EBOOK

"This book is a major treatise in mathematics and is essential in the working library of the modern analyst." (Bulletin of the London Mathematical Society)


An Introduction to Measure Theory

An Introduction to Measure Theory

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2021-09-03

Total Pages: 206

ISBN-13: 1470466406

DOWNLOAD EBOOK

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.


Measure, Integration & Real Analysis

Measure, Integration & Real Analysis

Author: Sheldon Axler

Publisher: Springer Nature

Published: 2019-11-29

Total Pages: 430

ISBN-13: 3030331431

DOWNLOAD EBOOK

This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/


Geometric Measure Theory

Geometric Measure Theory

Author: Frank Morgan

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 154

ISBN-13: 1483277801

DOWNLOAD EBOOK

Geometric Measure Theory: A Beginner's Guide provides information pertinent to the development of geometric measure theory. This book presents a few fundamental arguments and a superficial discussion of the regularity theory. Organized into 12 chapters, this book begins with an overview of the purpose and fundamental concepts of geometric measure theory. This text then provides the measure-theoretic foundation, including the definition of Hausdorff measure and covering theory. Other chapters consider the m-dimensional surfaces of geometric measure theory called rectifiable sets and introduce the two basic tools of the regularity theory of area-minimizing surfaces. This book discusses as well the fundamental theorem of geometric measure theory, which guarantees solutions to a wide class of variational problems in general dimensions. The final chapter deals with the basic methods of geometry and analysis in a generality that embraces manifold applications. This book is a valuable resource for graduate students, mathematicians, and research workers.


Weakly Differentiable Functions

Weakly Differentiable Functions

Author: William P. Ziemer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 323

ISBN-13: 1461210151

DOWNLOAD EBOOK

The term "weakly differentiable functions" in the title refers to those inte n grable functions defined on an open subset of R whose partial derivatives in the sense of distributions are either LP functions or (signed) measures with finite total variation. The former class of functions comprises what is now known as Sobolev spaces, though its origin, traceable to the early 1900s, predates the contributions by Sobolev. Both classes of functions, Sobolev spaces and the space of functions of bounded variation (BV func tions), have undergone considerable development during the past 20 years. From this development a rather complete theory has emerged and thus has provided the main impetus for the writing of this book. Since these classes of functions play a significant role in many fields, such as approximation theory, calculus of variations, partial differential equations, and non-linear potential theory, it is hoped that this monograph will be of assistance to a wide range of graduate students and researchers in these and perhaps other related areas. Some of the material in Chapters 1-4 has been presented in a graduate course at Indiana University during the 1987-88 academic year, and I am indebted to the students and colleagues in attendance for their helpful comments and suggestions.


Introduction to Measure Theory and Integration

Introduction to Measure Theory and Integration

Author: Luigi Ambrosio

Publisher: Springer Science & Business Media

Published: 2012-02-21

Total Pages: 193

ISBN-13: 8876423869

DOWNLOAD EBOOK

This textbook collects the notes for an introductory course in measure theory and integration. The course was taught by the authors to undergraduate students of the Scuola Normale Superiore, in the years 2000-2011. The goal of the course was to present, in a quick but rigorous way, the modern point of view on measure theory and integration, putting Lebesgue's Euclidean space theory into a more general context and presenting the basic applications to Fourier series, calculus and real analysis. The text can also pave the way to more advanced courses in probability, stochastic processes or geometric measure theory. Prerequisites for the book are a basic knowledge of calculus in one and several variables, metric spaces and linear algebra. All results presented here, as well as their proofs, are classical. The authors claim some originality only in the presentation and in the choice of the exercises. Detailed solutions to the exercises are provided in the final part of the book.


Geometric Integration Theory

Geometric Integration Theory

Author: Steven G. Krantz

Publisher: Springer Science & Business Media

Published: 2008-12-15

Total Pages: 344

ISBN-13: 0817646795

DOWNLOAD EBOOK

This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.


Measure and Integral

Measure and Integral

Author: Richard Wheeden

Publisher: CRC Press

Published: 1977-11-01

Total Pages: 289

ISBN-13: 1482229536

DOWNLOAD EBOOK

This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.


Modern Real Analysis

Modern Real Analysis

Author: William P. Ziemer

Publisher: Springer

Published: 2017-11-30

Total Pages: 389

ISBN-13: 331964629X

DOWNLOAD EBOOK

This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.