Geoenergy Modeling I

Geoenergy Modeling I

Author: Norbert Böttcher

Publisher: Springer

Published: 2016-06-27

Total Pages: 117

ISBN-13: 3319313355

DOWNLOAD EBOOK

This introduction to geothermal modeling deals with flow and heat transport processes in porous and fractured media related to geothermal energy applications. Following background coverage of geothermal resources and utilization in several countries, the basics of continuum mechanics for heat transport processes, as well as numerical methods for solving underlying governing equations are discussed. This examination forms the theoretical basis for five included step-by-step OpenGeoSys exercises, highlighting the most important computational areas within geothermal resource utilization, including heat diffusion, heat advection in porous and fractured media, and heat convection. The book concludes with an outlook on practical follow-up contributions investigating the numerical simulation of shallow and deep geothermal systems.


Geoenergy Modeling II

Geoenergy Modeling II

Author: Haibing Shao

Publisher: Springer

Published: 2016-10-06

Total Pages: 99

ISBN-13: 3319450573

DOWNLOAD EBOOK

This book is dedicated to the numerical modeling of shallow geothermal systems. The utilization of shallow geothermal energy involves the integration of multiple Borehole Heat Exchangers (BHE) with Ground Source Heat Pump (GSHP) systems to provide heating and cooling. The modeling practices explained in this book can improve the efficiency of these increasingly common systems. The book begins by explaining the basic theory of heat transport processes in man-made as well as natural media. . These techniques are then applied to the simulation of borehole heat exchangers and their interaction with the surrounding soil. The numerical and analytical models are verified against analytical solutions and measured data from a Thermal Response Test, and finally, a real test site is analyzed through the model and discussed with regard to BHE and GSHP system design and optimization.


Geoenergy Modeling III

Geoenergy Modeling III

Author: Norihiro Watanabe

Publisher: Springer

Published: 2016-11-10

Total Pages: 109

ISBN-13: 3319465813

DOWNLOAD EBOOK

This book focuses on numerical modeling of deep hydrothermal and petrothermal systems in fractured georeservoirs for utilization in Geothermal Energy applications. The authors explain the particular challenges and approaches to modeling heat transport and high-throughput flow in multiply fractured porous rock formations. In order to help readers gain a system-level understanding of the necessary analysis, the authors include detailed examples of growing complexity as the techniques explained in the text are introduced. The coverage culminates with the fully-coupled analysis of real deep geothermal test-sites located in Germany and France.


Computational Modeling of Shallow Geothermal Systems

Computational Modeling of Shallow Geothermal Systems

Author: Rafid Al-Khoury

Publisher: CRC Press

Published: 2011-09-30

Total Pages: 256

ISBN-13: 0415596270

DOWNLOAD EBOOK

A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal Systems Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and greenhouses. However, their utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. Projects of this nature are not getting the public support they deserve because of the uncertainties associated with them, and this can primarily be attributed to the lack of appropriate computational tools necessary to carry out effective designs and analyses. For this energy field to have a better competitive position in the renewable energy market, it is vital that engineers acquire computational tools, which are accurate, versatile and efficient. This book aims at attaining such tools. This book addresses computational modeling of shallow geothermal systems in considerable detail, and provides researchers and developers in computational mechanics, geosciences, geology and geothermal engineering with the means to develop computational tools capable of modeling the complicated nature of heat flow in shallow geothermal systems in rather straightforward methodologies. Coupled conduction-convection models for heat flow in borehole heat exchangers and the surrounding soil mass are formulated and solved using analytical, semi-analytical and numerical methods. Background theories, enhanced by numerical examples, necessary for formulating the models and conducting the solutions are thoroughly addressed. The book emphasizes two main aspects: mathematical modeling and computational procedures. In geothermics, both aspects are considerably challenging because of the involved geometry and physical processes. However, they are highly stimulating and inspiring. A good combination of mathematical modeling and computational procedures can greatly reduce the computational efforts. This book thoroughly treats this issue and introduces step-by-step methodologies for developing innovative computational models, which are both rigorous and computationally efficient.


Introduction to the Numerical Modeling of Groundwater and Geothermal Systems

Introduction to the Numerical Modeling of Groundwater and Geothermal Systems

Author: Jochen Bundschuh

Publisher: CRC Press

Published: 2010-07-05

Total Pages: 522

ISBN-13: 0203848101

DOWNLOAD EBOOK

This book provides an introduction to the scientific fundamentals of groundwater and geothermal systems. In a simple and didactic manner the different water and energy problems existing in deformable porous rocks are explained as well as the corresponding theories and the mathematical and numerical tools that lead to modeling and solving them. This


Mathematical Geoenergy

Mathematical Geoenergy

Author: Paul Pukite

Publisher: John Wiley & Sons

Published: 2019-01-07

Total Pages: 373

ISBN-13: 1119434297

DOWNLOAD EBOOK

A rigorous mathematical problem-solving framework for analyzing the Earth’s energy resources GeoEnergy encompasses the range of energy technologies and sources that interact with the geological subsurface. Fossil fuel availability studies have historically lacked concise modeling, tending instead toward heuristics and overly-complex processes. Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal details leading-edge research based on a mathematically-oriented approach to geoenergy analysis. Volume highlights include: Applies a formal mathematical framework to oil discovery, depletion, and analysis Employs first-order applied physics modeling, decreasing computational resource requirements Illustrates model interpolation and extrapolation to fill out missing or indeterminate data Covers both stochastic and deterministic mathematical processes for historical analysis and prediction Emphasizes the importance of up-to-date data, accessed through the companion website Demonstrates the advantages of mathematical modeling over conventional heuristic and empirical approaches Accurately analyzes the past and predicts the future of geoenergy depletion and renewal using models derived from observed production data Intuitive mathematical models and readily available algorithms make Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal an insightful and invaluable resource for scientists and engineers using robust statistical and analytical tools applicable to oil discovery, reservoir sizing, dispersion, production models, reserve growth, and more.


Models of Thermochemical Heat Storage

Models of Thermochemical Heat Storage

Author: Christoph Lehmann

Publisher: Springer

Published: 2018-01-23

Total Pages: 102

ISBN-13: 3319715232

DOWNLOAD EBOOK

Thermochemical gas-solid reactions, as well as adsorption processes, are currently of significant interest for the design of heat storage systems. This book provides detailed models of these reactions and processes that account for heat and mass transport, chemical and physical reactions, and possible local thermal non-equilibrium. The underlying scientific theory behind the models is explained, laboratory tests are simulated, and methods for high-performance computing are discussed. Applications ranging from seasonal domestic heat storage to diurnally operating systems in concentrating solar power facilities are considered in these models, which are not available through any other sources. Finally, an outlook on future developments highlights emerging technologies.


Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking

Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking

Author: Olaf Kolditz

Publisher: Springer

Published: 2018-03-01

Total Pages: 310

ISBN-13: 3319682253

DOWNLOAD EBOOK

The book comprises the 3rd collection of benchmarks and examples for porous and fractured media mechanics. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to a wide area of applications in environmental engineering, such as geological waste deposition, geothermal energy utilization (shallow and deep systems), carbon capture and storage (CCS) as well as water resources management and hydrology. In order to assess the feasibility, safety as well as sustainability of geoenvironmental applications, model-based simulation is the only way to quantify future scenarios. This charges a huge responsibility concerning the reliability of conceptual models and computational tools. Benchmarking is an appropriate methodology to verify the quality and validate the concept of models based on best practices. Moreover, benchmarking and code comparison are building strong community links. The 3rd THMC benchmark book also introduces benchmark-based tutorials, therefore the subtitle is selected as “From Benchmarking to Tutoring”. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation. The new version of OGS-6 is introduced and first benchmarks are presented therein (see appendices).


Geothermal Reservoir Engineering

Geothermal Reservoir Engineering

Author: Malcolm Alister Grant

Publisher: Academic Press

Published: 2011-04-01

Total Pages: 379

ISBN-13: 0123838819

DOWNLOAD EBOOK

As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate. For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference. This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The book focuses particularly on the evaluation of potential sites and provides detailed guidance on the field management of the power plants built on them. With over 100 pages of new material informed by the breakthroughs of the last 25 years, Geothermal Reservoir Engineering remains the only training tool and professional reference dedicated to advising both new and experienced geothermal reservoir engineers. - The only resource available to help geothermal professionals make smart choices in field site selection and reservoir management - Practical focus eschews theory and basics- getting right to the heart of the important issues encountered in the field - Updates include coverage of advances in EGS (enhanced geothermal systems), well stimulation, well modeling, extensive field histories and preparing data for reservoir simulation - Case studies provide cautionary tales and best practices that can only be imparted by a seasoned expert


OpenGeoSys Tutorial

OpenGeoSys Tutorial

Author: Agnes Sachse

Publisher: Springer

Published: 2017-03-07

Total Pages: 82

ISBN-13: 3319528092

DOWNLOAD EBOOK

This book explores the application of the open-source software OpenGeoSys (OGS) for hydrological numerical simulations concerning conservative and reactive transport modeling. It provides general information on the hydrological and groundwater flow modeling of a real case study and step-by-step model set-up with OGS, while also highlighting related components such as the OGS Data Explorer. The material is based on unpublished manuals and the results of a collaborative project between China and Germany (SUSTAIN H2O). Though the book is primarily intended for graduate students and applied scientists who deal with hydrological modeling, it also offers a valuable source of information for professional geoscientists wishing to expand their knowledge of the numerical modeling of hydrological processes including nitrate reactive transport modeling. This book is the second in a series that showcases further applications of computational modeling in hydrological science.