Prokaryotic Cytoskeletons

Prokaryotic Cytoskeletons

Author: Jan Löwe

Publisher: Springer

Published: 2017-05-11

Total Pages: 457

ISBN-13: 331953047X

DOWNLOAD EBOOK

This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells. Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution. Chapter 3 of this book is open access under a CC BY 4.0 license.


The Cell Cycle

The Cell Cycle

Author: David Owen Morgan

Publisher: New Science Press

Published: 2007

Total Pages: 328

ISBN-13: 0878935088

DOWNLOAD EBOOK

The Cell Cycle: Principles of Control provides an engaging insight into the process of cell division, bringing to the student a much-needed synthesis of a subject entering a period of unprecedented growth as an understanding of the molecular mechanisms underlying cell division are revealed.


Systems Biology

Systems Biology

Author: Mohamed Al-Rubeai

Publisher: Springer Science & Business Media

Published: 2007-05-15

Total Pages: 426

ISBN-13: 1402052529

DOWNLOAD EBOOK

This book is a comprehensive guide to the revolutionary area of systems biology and its application in cell culture engineering. It is designed to offer a state-of-the-art review with in depth assessments and perspectives of post-genomic biology through understanding the molecular and cellular basis of integrated biological systems. The chapters describe the necessary methodologies for performing systems biology research.


Molecular Microbiology of Heavy Metals

Molecular Microbiology of Heavy Metals

Author: Dietrich H. Nies

Publisher: Springer Science & Business Media

Published: 2007-03-24

Total Pages: 455

ISBN-13: 3540697713

DOWNLOAD EBOOK

This book covers allocation of metals in cells, metal transporter, storage and metalloregulatory proteins, cellular responses to metal ion stress, transcription of genes involved in metal ion homeostasis, uptake of essential metals, metal efflux and other detoxification mechanisms. The book also discusses metal bioreporters for the nanomolar range of concentration and tools to address the metallome. In addition, coverage details specific metals.


Systems Biology

Systems Biology

Author: Mohamed Al-Rubeai

Publisher: Springer Science & Business Media

Published: 2007-05-15

Total Pages: 426

ISBN-13: 1402052529

DOWNLOAD EBOOK

This book is a comprehensive guide to the revolutionary area of systems biology and its application in cell culture engineering. It is designed to offer a state-of-the-art review with in depth assessments and perspectives of post-genomic biology through understanding the molecular and cellular basis of integrated biological systems. The chapters describe the necessary methodologies for performing systems biology research.


Physical Biology of the Cell

Physical Biology of the Cell

Author: Rob Phillips

Publisher: Garland Science

Published: 2012-10-29

Total Pages: 1089

ISBN-13: 1134111584

DOWNLOAD EBOOK

Physical Biology of the Cell is a textbook for a first course in physical biology or biophysics for undergraduate or graduate students. It maps the huge and complex landscape of cell and molecular biology from the distinct perspective of physical biology. As a key organizing principle, the proximity of topics is based on the physical concepts that


Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Author: Frans J. de Bruijn

Publisher: John Wiley & Sons

Published: 2016-07-13

Total Pages: 1472

ISBN-13: 1119004896

DOWNLOAD EBOOK

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.


Asymmetric Cell Division in Development, Differentiation and Cancer

Asymmetric Cell Division in Development, Differentiation and Cancer

Author: Jean-Pierre Tassan

Publisher: Springer

Published: 2017-04-12

Total Pages: 421

ISBN-13: 3319531506

DOWNLOAD EBOOK

This book provides readers with an overview of the frequent occurrence of asymmetric cell division. Employing a broad range of examples, it highlights how this mode of cell division constitutes the basis of multicellular organism development and how its misregulation can lead to cancer. To underline such developmental correlations, readers will for example gain insights into stem cell fate and tumor growth. In turn, subsequent chapters include descriptions of asymmetric cell division from unicellular organisms to humans in both physiological and pathological conditions. The book also illustrates the importance of this process for evolution and our need to understand the background mechanisms, offering a valuable guide not only for students in the field of developmental biology but also for experienced researchers from neighboring fields.


The Individual Microbe: Single-Cell Analysis and Agent-Based Modelling

The Individual Microbe: Single-Cell Analysis and Agent-Based Modelling

Author: Johan H. J. Leveau

Publisher: Frontiers Media SA

Published: 2019-02-19

Total Pages: 187

ISBN-13: 2889457494

DOWNLOAD EBOOK

Recent technological advances in single-cell microbiology, using flow cytometry, microfluidics, x-ray fluorescence microprobes, and single-cell -omics, allow for the observation of individuals within populations. Simultaneously, individual-based models (or more generally agent-based models) allow for individual microbes to be simulated. Bridging these techniques forms the foundation of individual-based ecology of microbes (µIBE). µIBE has elucidated genetic and phenotypic heterogeneity that has important consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. Individual-based models can help us to understand how these sets of traits of individual microbes influence the above. This eBook compiles all publications from a recent Research Topic in Frontiers in Microbiology. It features recent research where individual observational and/or modelling techniques are applied to gain unique insights into the ecology of microorganisms. The Research Topic “The Individual Microbe: Single-Cell Analysis and Agent-Based Modelling” arose from the 2016 @ASM conference of the same name hosted by the American Society for Microbiology at its headquarters in Washington, D.C. We are grateful to ASM for funding and hosting this conference.