Genome Sequencing Technology and Algorithms

Genome Sequencing Technology and Algorithms

Author: Sun Kim

Publisher: Artech House Publishers

Published: 2008

Total Pages: 288

ISBN-13:

DOWNLOAD EBOOK

The 2003 completion of the Human Genome Project was just one step in the evolution of DNA sequencing. This trailblazing work gives researchers unparalleled access to state-of-the-art DNA sequencing technologies, new algorithmic sequence assembly techniques, and emerging methods for both resequencing and genome analysis.


Algorithms for Next-Generation Sequencing

Algorithms for Next-Generation Sequencing

Author: Wing-Kin Sung

Publisher: CRC Press

Published: 2017-05-18

Total Pages: 258

ISBN-13: 1498752985

DOWNLOAD EBOOK

Advances in sequencing technology have allowed scientists to study the human genome in greater depth and on a larger scale than ever before – as many as hundreds of millions of short reads in the course of a few days. But what are the best ways to deal with this flood of data? Algorithms for Next-Generation Sequencing is an invaluable tool for students and researchers in bioinformatics and computational biology, biologists seeking to process and manage the data generated by next-generation sequencing, and as a textbook or a self-study resource. In addition to offering an in-depth description of the algorithms for processing sequencing data, it also presents useful case studies describing the applications of this technology.


Genome-Scale Algorithm Design

Genome-Scale Algorithm Design

Author: Veli Mäkinen

Publisher: Cambridge University Press

Published: 2023-10-12

Total Pages: 470

ISBN-13: 1009341219

DOWNLOAD EBOOK

Guided by standard bioscience workflows in high-throughput sequencing analysis, this book for graduate students, researchers, and professionals in bioinformatics and computer science offers a unified presentation of genome-scale algorithms. This new edition covers the use of minimizers and other advanced data structures in pangenomics approaches.


Algorithms for Next-Generation Sequencing Data

Algorithms for Next-Generation Sequencing Data

Author: Mourad Elloumi

Publisher: Springer

Published: 2017-09-18

Total Pages: 356

ISBN-13: 3319598260

DOWNLOAD EBOOK

The 14 contributed chapters in this book survey the most recent developments in high-performance algorithms for NGS data, offering fundamental insights and technical information specifically on indexing, compression and storage; error correction; alignment; and assembly. The book will be of value to researchers, practitioners and students engaged with bioinformatics, computer science, mathematics, statistics and life sciences.


Next-generation DNA Sequencing Informatics

Next-generation DNA Sequencing Informatics

Author: Stuart M. Brown

Publisher:

Published: 2015

Total Pages: 0

ISBN-13: 9781621821236

DOWNLOAD EBOOK

"Next-generation DNA sequencing (NGS) technology has revolutionized biomedical research, making complete genome sequencing an affordable and frequently used tool for a wide variety of research applications. This book provides a thorough introduction to the necessary informatics methods and tools for operating NGS instruments and analyzing NGS data"


Next Generation Sequencing Technologies and Challenges in Sequence Assembly

Next Generation Sequencing Technologies and Challenges in Sequence Assembly

Author: Sara El-Metwally

Publisher: Springer Science & Business

Published: 2014-04-19

Total Pages: 123

ISBN-13: 1493907158

DOWNLOAD EBOOK

The introduction of Next Generation Sequencing (NGS) technologies resulted in a major transformation in the way scientists extract genetic information from biological systems, revealing limitless insight about the genome, transcriptome and epigenome of any species. However, with NGS, came its own challenges that require continuous development in the sequencing technologies and bioinformatics analysis of the resultant raw data and assembly of the full length genome and transcriptome. Such developments lead to outstanding improvements of the performance and coverage of sequencing and improved quality for the assembled sequences, nevertheless, challenges such as sequencing errors, expensive processing and memory usage for assembly and sequencer specific errors remains major challenges in the field. This book aims to provide brief overviews the NGS field with special focus on the challenges facing the NGS field, including information on different experimental platforms, assembly algorithms and software tools, assembly error correction approaches and the correlated challenges.


Next Generation Sequencing

Next Generation Sequencing

Author: Jerzy Kulski

Publisher: BoD – Books on Demand

Published: 2016-01-14

Total Pages: 466

ISBN-13: 9535122401

DOWNLOAD EBOOK

Next generation sequencing (NGS) has surpassed the traditional Sanger sequencing method to become the main choice for large-scale, genome-wide sequencing studies with ultra-high-throughput production and a huge reduction in costs. The NGS technologies have had enormous impact on the studies of structural and functional genomics in all the life sciences. In this book, Next Generation Sequencing Advances, Applications and Challenges, the sixteen chapters written by experts cover various aspects of NGS including genomics, transcriptomics and methylomics, the sequencing platforms, and the bioinformatics challenges in processing and analysing huge amounts of sequencing data. Following an overview of the evolution of NGS in the brave new world of omics, the book examines the advances and challenges of NGS applications in basic and applied research on microorganisms, agricultural plants and humans. This book is of value to all who are interested in DNA sequencing and bioinformatics across all fields of the life sciences.


Computational Genomics with R

Computational Genomics with R

Author: Altuna Akalin

Publisher: CRC Press

Published: 2020-12-16

Total Pages: 463

ISBN-13: 1498781861

DOWNLOAD EBOOK

Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.


Algorithms on Strings, Trees, and Sequences

Algorithms on Strings, Trees, and Sequences

Author: Dan Gusfield

Publisher: Cambridge University Press

Published: 1997-05-28

Total Pages: 556

ISBN-13: 1139811002

DOWNLOAD EBOOK

String algorithms are a traditional area of study in computer science. In recent years their importance has grown dramatically with the huge increase of electronically stored text and of molecular sequence data (DNA or protein sequences) produced by various genome projects. This book is a general text on computer algorithms for string processing. In addition to pure computer science, the book contains extensive discussions on biological problems that are cast as string problems, and on methods developed to solve them. It emphasises the fundamental ideas and techniques central to today's applications. New approaches to this complex material simplify methods that up to now have been for the specialist alone. With over 400 exercises to reinforce the material and develop additional topics, the book is suitable as a text for graduate or advanced undergraduate students in computer science, computational biology, or bio-informatics. Its discussion of current algorithms and techniques also makes it a reference for professionals.


Algorithms in Bioinformatics

Algorithms in Bioinformatics

Author: Wing-Kin Sung

Publisher: CRC Press

Published: 2009-11-24

Total Pages: 408

ISBN-13: 1420070347

DOWNLOAD EBOOK

Thoroughly Describes Biological Applications, Computational Problems, and Various Algorithmic Solutions Developed from the author's own teaching material, Algorithms in Bioinformatics: A Practical Introduction provides an in-depth introduction to the algorithmic techniques applied in bioinformatics. For each topic, the author clearly details the bi