Genome Exploitation: Data Mining the Genome is developed from the 23rd Stadler Genetic Symposium. This volume discusses and illustrates how scientists are going to characterize and make use of the massive amount of information being accumulated about the plant and animal genomes. Genome Exploitation: Data Mining the Genome is a state-of-the-art picture on mining the Genome databases. This is one of the few times that researchers in both plants and animals will be working together to create a seminal data resource.
The Human Mitochondrial Genome: From Basic Biology to Disease offers a comprehensive, up-to-date examination of human mitochondrial genomics, connecting basic research to translational medicine across a range of disease types. Here, international experts discuss the essential biology of human mitochondrial DNA (mtDNA), including its maintenance, repair, segregation, and heredity. Furthermore, mtDNA evolution and exploitation, mutations, methods, and models for functional studies of mtDNA are dealt with. Disease discussion is accompanied by approaches for treatment strategies, with disease areas discussed including cancer, neurodegenerative, age-related, mtDNA depletion, deletion, and point mutation diseases. Nucleosides supplementation, mitoTALENs, and mitoZNF nucleases are among the therapeutic approaches examined in-depth. With increasing funding for mtDNA studies, many clinicians and clinician scientists are turning their attention to mtDNA disease association. This book provides the tools and background knowledge required to perform new, impactful research in this exciting space, from distinguishing a haplogroup-defining variant or disease-related mutation to exploring emerging therapeutic pathways. - Fully examines recent advances and technological innovations in the field, enabling new mtDNA studies, variant and mutation identification, pathogenic assessment, and therapies - Disease discussion accompanied by diagnostic and therapeutic strategies currently implemented clinically - Outlines and discusses essential research protocols and perspectives for young scientists to pick up - Features an international team of authoritative contributors from basic biologists to clinician-scientists
Raising hopes for disease treatment and prevention, but also the specter of discrimination and "designer genes," genetic testing is potentially one of the most socially explosive developments of our time. This book presents a current assessment of this rapidly evolving field, offering principles for actions and research and recommendations on key issues in genetic testing and screening. Advantages of early genetic knowledge are balanced with issues associated with such knowledge: availability of treatment, privacy and discrimination, personal decision-making, public health objectives, cost, and more. Among the important issues covered: Quality control in genetic testing. Appropriate roles for public agencies, private health practitioners, and laboratories. Value-neutral education and counseling for persons considering testing. Use of test results in insurance, employment, and other settings.
Matching DNA samples from crime scenes and suspects is rapidly becoming a key source of evidence for use in our justice system. DNA Technology in Forensic Science offers recommendations for resolving crucial questions that are emerging as DNA typing becomes more widespread. The volume addresses key issues: Quality and reliability in DNA typing, including the introduction of new technologies, problems of standardization, and approaches to certification. DNA typing in the courtroom, including issues of population genetics, levels of understanding among judges and juries, and admissibility. Societal issues, such as privacy of DNA data, storage of samples and data, and the rights of defendants to quality testing technology. Combining this original volume with the new update-The Evaluation of Forensic DNA Evidence-provides the complete, up-to-date picture of this highly important and visible topic. This volume offers important guidance to anyone working with this emerging law enforcement tool: policymakers, specialists in criminal law, forensic scientists, geneticists, researchers, faculty, and students.
This open access book provides original, up-to-date case studies of “ethics dumping” that were largely facilitated by loopholes in the ethics governance of low and middle-income countries. It is instructive even to experienced researchers since it provides a voice to vulnerable populations from the fore mentioned countries. Ensuring the ethical conduct of North-South collaborations in research is a process fraught with difficulties. The background conditions under which such collaborations take place include extreme differentials in available income and power, as well as a past history of colonialism, while differences in culture can add a new layer of complications. In this context, up-to-date case studies of unethical conduct are essential for research ethics training.
DNA patenting has emerged as a hot topic in science policy and bioethics as private companies and government agencies spend billions of dollars on genetic research and development in a race to identify, sequence, and analyze DNA from human, animal, and plant species. David B. Resnik's Owning the Genome explores the ethical, social, philosophical, theological, and policy issues surrounding DNA patenting and develops a comprehensive approach to the topic. Resnik considers arguments for and against DNA patenting and concludes that only a patent on a whole human genome would be inherently immoral, while the morality of other DNA patents depends on their consequences for science, medicine, agriculture, industry, and society. He also stresses the importance of government regulations and policies in order to minimize the harmful effects of patenting while promoting the beneficial ones.
Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging. This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability. - A deep analysis of genome stability research from various kingdoms, including epigenetics and transgenerational effects - Provides comprehensive coverage of mechanisms utilized by different organisms to maintain genomic stability - Contains applications of genome instability research and outcomes for human disease - Features all-new chapters on evolving areas of genome stability research, including CRISPRs/Cas9 genome editing, RNA and extrachromosomal DNA, programmed genome instability, and conserved and divergent features of repair
How small can a free-living organism be? On the surface, this question is straightforward-in principle, the smallest cells can be identified and measured. But understanding what factors determine this lower limit, and addressing the host of other questions that follow on from this knowledge, require a fundamental understanding of the chemistry and ecology of cellular life. The recent report of evidence for life in a martian meteorite and the prospect of searching for biological signatures in intelligently chosen samples from Mars and elsewhere bring a new immediacy to such questions. How do we recognize the morphological or chemical remnants of life in rocks deposited 4 billion years ago on another planet? Are the empirical limits on cell size identified by observation on Earth applicable to life wherever it may occur, or is minimum size a function of the particular chemistry of an individual planetary surface? These questions formed the focus of a workshop on the size limits of very small organisms, organized by the Steering .Group for the Workshop on Size Limits of Very Small Microorganisms and held on October 22 and 23, 1998. Eighteen invited panelists, representing fields ranging from cell biology and molecular genetics to paleontology and mineralogy, joined with an almost equal number of other participants in a wide-ranging exploration of minimum cell size and the challenge of interpreting micro- and nano-scale features of sedimentary rocks found on Earth or elsewhere in the solar system. This document contains the proceedings of that workshop. It includes position papers presented by the individual panelists, arranged by panel, along with a summary, for each of the four sessions, of extensive roundtable discussions that involved the panelists as well as other workshop participants.
This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye’s domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.