Musa is one of three genera in the family of Musaceae. Over 50 species of Musa exist, including bananas and plantains. This book assembles the latest information on the genomic research of this genus. A group of leading experts in Musa genetics, genomics, and breeding provide basic as well as advanced information for those interested in learning more about the banana genome. The accessible style is easily understood by students and researchers, making the book an ideal springboard for those looking to do expanded research into this crop.
This volume covers the advances in the study of tomato diversity and taxonomy. It examines the mapping of simple and complex traits, classical genetics and breeding, association studies, molecular breeding, positional cloning, and structural and comparative genomics. The contributors also discuss transcriptomics, proteomics, metabolomics, and bioinformatics. The information in this book will be useful to researchers working on other Solanaceaous crops as well as those interested in using the tomato as a model crop species.
The stone fruits—including peaches, apricots, almonds, plums, and cherries—have been bred and grown for thousands of years and today are significant agricultural crops in many local economies worldwide. This volume presents a comprehensive commentary on classical genetics and breeding, molecular mapping and breeding of agronomic traits, and the cloning of genes of interest. It also explores recent advances on omics sciences including structural and functional genomics, proteomics, nd metabolomics. The book enumerates the whole genome sequencing of the model fruit plant peach and discusses bioinformatic strategies and tools for stone fruit research
Tree species are indispensable to support human life. Due to their long life cycle and environmental sensitivity, breeding trees to suit day-to-day human needs is a formidable challenge. Whether they are edible or industrial crops, improving yield under optimal, sub-optimal and marginal areas calls for uni?ed efforts from the s- entistsaroundtheworld. Whiletheuniquenessofcoconutaskalpavriksha(Sanskr- meaning tree-of-life) marks its presence in every continent from Far East to South America, tree crops like cocoa, oil palm, rubber, apple, peach, grapes and walnut prove their environmental sensitivity towards tropical, sub-tropical and temperate climates. Desert climate is quintessential for date palm. Thus, from soft drinks to breweries to beverages to oil to tyres, the value addition offers a spectrum of pr- ucts to human kind, enriched with nutritional, environmental, ?nancial, social and trade related attributes. Taxonomically, tree crops do not con?ne to a few families, but spread across a section of genera, an attribute so unique that contributes immensely to genetic biodiversity even while cultivated at the commercial scale. Many of these species in?uence other ?ora to nurture in their vicinity, thus ensuring their integrity in p- serving the genetic biodiversity. While wheat, rice, maize, barley, soybean, cassava andbananamakeup themajorfoodstaples,manyfruittreespeciescontributegreatly tonutritionalenrichment inhumandiet. Theediblepartofthesespeciesisthesource of several nutrients that makes additives for the daily diet of humans, for example, vitamins, sugars, aromas and ?avour compounds, and raw material for food proce- ing industries. Tree crops face an array of agronomic and horticultural problems in propagation, yield, appearance, quality, diseases and pest control, abiotic stresses and poor shelf-life.
The guidelines are divided into two parts. The first part makes general recommendations on how best to move Musa germplasm. The second part covers the important pests and diseases of quarantine concern. The information given on a particular pest or disease is not exhaustive but concentrates on those aspects that are most relevant to quarantine.
This is the second edition of Musalogue to be published by INIBAP. This Musalogue covers most of the diversity in the genus Musa and is intended to be educational in nature. Through this publication, INIBAP aims to inform a wide audience about the vast range of diversity to be found in both cultivated bananas and their wild relatives. The publication is divided into two parts. The first part focuses on the wild species, covering the sections Eumusa, Australimusa, Callimusa and Rhodochlamys, while the second part provides information on cultivated varieties (cultivars). A list of the species and main groups and subgroups ofcultivars in the genus Musa is provided on page ix-xi (international classification).
In a field of mature bananas, plants can be seen at all stages of vegetative growth and fruit maturity, providing a fascination for anyone who has an interest in growing crops. Banana farmers in the tropics can harvest fruit every day of the year. The absence of seasonality in production is an advantage, in that it provides a continuity of carbohydrate to meet dietary needs as well as a regular source of income, a feature that perhaps has been under-estimated by rural planners and agricultural strategists. The burgeoning interest in bananas in the last 20 years results from the belated realization that Musa is an under-exploited genus, notwithstanding the fact that one genetically narrow group, the Cavendish cultivars, supply a major export commodity second only to citrus in terms of the world fruit trade. International research interest in the diversity of fruit types has been slow to develop, presumably because bananas and plantains have hitherto been regarded as a reliable backyard source of dessert fruit or starch supplying the needs of the household, and in this situation relatively untroubled by pests, diseases or agronomic problems.
This paper provides guidelines for new high-throughput screening methods – both phenotypic and genotypic – to enable the detection of rare mutant traits, and reviews techniques for increasing the efficiency of crop mutation breeding.
This book is open access under a CC BY-NC 2.5 license. This book offers 19 detailed protocols on the use of induced mutations in crop breeding and functional genomics studies, which cover topics including chemical and physical mutagenesis, phenotypic screening methods, traditional TILLING and TILLING by sequencing, doubled haploidy, targeted genome editing, and low-cost methods for the molecular characterization of mutant plants that are suitable for laboratories in developing countries. The collection of protocols equips users with the techniques they need in order to start a program on mutation breeding or functional genomics using both forward and reverse-genetic approaches. Methods are provided for seed and vegetatively propagated crops (e.g. banana, barley, cassava, jatropha, rice) and can be adapted for use in other species.
Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.