Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences

Author: Wade H. Shafer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 427

ISBN-13: 1461303931

DOWNLOAD EBOOK

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 39 (thesis year 1994) a total of 13,953 thesis titles from 21 Canadian and 159 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 39 reports theses submitted in 1994, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.


Spacecraft Trajectory Optimization

Spacecraft Trajectory Optimization

Author: Bruce A. Conway

Publisher: Cambridge University Press

Published: 2010-08-23

Total Pages: 313

ISBN-13: 113949077X

DOWNLOAD EBOOK

This is a long-overdue volume dedicated to space trajectory optimization. Interest in the subject has grown, as space missions of increasing levels of sophistication, complexity, and scientific return - hardly imaginable in the 1960s - have been designed and flown. Although the basic tools of optimization theory remain an accepted canon, there has been a revolution in the manner in which they are applied and in the development of numerical optimization. This volume purposely includes a variety of both analytical and numerical approaches to trajectory optimization. The choice of authors has been guided by the editor's intention to assemble the most expert and active researchers in the various specialities presented. The authors were given considerable freedom to choose their subjects, and although this may yield a somewhat eclectic volume, it also yields chapters written with palpable enthusiasm and relevance to contemporary problems.


Optimal Control with Aerospace Applications

Optimal Control with Aerospace Applications

Author: James M Longuski

Publisher: Springer Science & Business Media

Published: 2013-11-04

Total Pages: 286

ISBN-13: 1461489458

DOWNLOAD EBOOK

Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e.g., crossing a river in minimum time) to engineering problems (e.g., minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further!


Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

Author:

Publisher:

Published: 2002

Total Pages: 24

ISBN-13:

DOWNLOAD EBOOK

A small-scale, instrumented research aircraft was flown to investigate the flight characteristics of inflatable wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program.