This book is the 2nd special volume dedicated to the memory of Gérard Maugin. Over 30 leading scientists present their contribution to reflect the vast field of scientific activity of Gérard Maugin. The topics of contributions employing often non-standard methods (generalized model) in this volume show the wide range of subjects that were covered by this exceptional scientific leader. The topics range from micromechanical basics to engineering applications, focusing on new models and applications of well-known models to new problems. They include micro-macro aspects, computational efforts, possibilities to identify the constitutive equations, and old problems with incorrect or non-satisfying solutions based on the classical continua assumptions.
This book is the first of 2 special volumes dedicated to the memory of Gérard Maugin. Including 40 papers that reflect his vast field of scientific activity, the contributions discuss non-standard methods (generalized model) to demonstrate the wide range of subjects that were covered by this exceptional scientific leader. The topics range from micromechanical basics to engineering applications, focusing on new models and applications of well-known models to new problems. They include micro–macro aspects, computational endeavors, options for identifying constitutive equations, and old problems with incorrect or non-satisfying solutions based on the classical continua assumptions.
In this book, well-known scientists discuss modern aspects of generalized continua, in order to better understand modern materials and advanced structures. They possess complicated internal structure, and it requires the development of new approaches to model such structures and new effects caused by it. This book combines fundamental contributions in honor of Victor Eremeyev and his 60th birthday.
This book reviews the mathematical modeling and experimental study of systems involving two or more different length scales. The effects of phenomena occurring at the lower length scales on the behavior at higher scales are of intrinsic scientific interest, but can also be very effectively used to determine the behavior at higher length scales or at the macro-level. Efforts to exploit this micro- and macro-coupling are, naturally, being pursued with regard to every aspect of mechanical phenomena. This book focuses on the changes imposed on the dynamics, strength of materials and durability of mechanical systems by related multiscale phenomena. In particular, it addresses: 1: the impacts of effective dissipation due to kinetic energy trapped at lower scales 2: wave propagation in generalized continua 3: nonlinear phenomena in metamaterials 4: the formalization of more general models to describe the exotic behavior of meta-materials 5: the design and study of microstructures aimed at increasing the toughness and durability of novel materials
This book discusses the theoretical foundations of the structural modeling method applied to metamaterials. This method takes into account the parameters of the crystal lattice, the size of the medium particles, as well as their shape and constants of force interactions between them. It provides mathematical models of metamaterials that offer insights into the qualitative influence of the local structure on the effective elastic moduli of the considered medium and into performing theoretical estimations of these quantities. This book is useful for researchers working in the fields of solid mechanics, physical acoustics, and condensed matter physics, as well as for graduate and postgraduate students studying mathematical modeling methods.
This book presents a liber amicorum dedicated to Wolfgang H. Müller, and highlights recent advances in Prof. Müller’s major fields of research: continuum mechanics, generalized mechanics, thermodynamics, mechanochemistry, and geomechanics. Over 50 of Prof. Müller’s friends and colleagues contributed to this book, which commemorates his 60th birthday and was published in recognition of his outstanding contributions.
Explores the relationship between discrete and continuum mechanics as a tool to model new and complex metamaterials. Including a comprehensive bibliography and historical review of the field, and a pedagogical mathematical treatment, it is ideal for graduate students and researchers in mechanical and civil engineering, and materials science.
This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.
This book presents a collection of chapters on the current problems of the theory of dynamical processes in generalized continua and structures, and has been compiled to commemorate the 70th birthday of Prof. Dmitry Indeitsev – a leading specialist in the field of dynamical processes in solids, fluids and structures. It discusses various applications related to Prof. Indeitsev’s contributions, including various discrete and continuous dynamic models of structures and media, as well as a number of dynamical processes in generalized media.
This book focuses on original theories and approaches in the field of mechanics. It reports on both theoretical and applied researches, with a special emphasis on problems and solutions at the interfaces of mechanics and other research areas. The respective chapters highlight cutting-edge works fostering development in fields such as micro- and nanomechanics, material science, physics of solid states, molecular physics, astrophysics, and many others. Special attention has been given to outstanding research conducted by young scientists from all over the world. This book is based on the 48th edition of the international conference “Advanced Problems in Mechanics”, which was held in 2020, in St. Petersburg, Russia, and co-organized by The Peter the Great St. Petersburg Polytechnic University and the Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, under the patronage of the Russian Academy of Sciences. It provides researchers and graduate students with an extensive overview of the latest research and a source of inspiration for future developments and collaborations in mechanics and related fields.