This book provides a systematic and unified approach to the analysis, identification and optimal control of continuous-time dynamical systems via orthogonal polynomials such as Legendre, Laguerre, Hermite, Tchebycheff, Jacobi, Gegenbauer, and via orthogonal functions such as sine-cosine, block-pulse, and Walsh. This is the first book devoted to the application of orthogonal polynomials in systems and control, establishing the superiority of orthogonal polynomials to other orthogonal functions.
Orthogonal Functions may be divided into two classes. The class of continuous systems and the discontinuous class of piecewise constant systems. Problems arise because continuous systems form an unsatisfactory basis for the expansion of functions containing discontinuities whilst piecewise constant systems insert artificial discontinuities into all representations. Since these two classes of functions would be unsuccessful in coping with functions that possess both continuity and discontinuity we must look to General Hybrid Orthogonal Functions (GHOF) which have been shown to be the most appropriate in such situations. This book introduces the system of GHOF, discusses its properties, develops an operational algebra for the discretization of continuous dynamic systems on the system of GHOF and illustrates its use as a flexible and powerful framework of computational tools in a wide range of systems and control.
A Totally Different Outlook on Power Electronic System Analysis Power Electronic Systems: Walsh Analysis with MATLAB® builds a case for Walsh analysis as a powerful tool in the study of power electronic systems. It considers the application of Walsh functions in analyzing power electronic systems, and the advantages offered by Walsh domain analysis of power electronic systems. Solves Power Electronic Systems in an Unconventional Way This book successfully integrates power electronics as well as systems and control. Incorporating a complete orthonormal function set very much unlike the sine–cosine functions, it introduces a blending between piecewise constant orthogonal functions and power electronic systems. It explores the background and evolution of power electronics, and discusses Walsh and related orthogonal basis functions. It develops the mathematical foundation of Walsh analysis, and first- and second-order system analyses by Walsh technique. It also describes the Walsh domain operational method and how it is applied to linear system analysis. Introduces Theories Step by Step While presenting the underlying principles of Walsh analysis, the authors incorporate many illustrative examples, and include a basic introduction to linear algebra and MATLAB® programs. They also examine different orthogonal piecewise constant basis functions like Haar, Walsh, slant, block pulse functions, and other related orthogonal functions along with their time scale evolution. • Analyzes pulse–fed single input single output (SISO) first- and second-order systems • Considers stepwise and continuously pulse width modulated chopper systems • Describes a detailed analysis of controlled rectifier circuits • Addresses inverter circuits Power Electronic Systems: Walsh Analysis with MATLAB® is written for postgraduate students, researchers, and academicians in the area of power electronics as well as systems and control.
This book deals with a new set of triangular orthogonal functions, which evolved from the set of well-known block pulse functions (BPF), a major member of the piecewise constant orthogonal function (PCOF) family. Unlike PCOF, providing staircase solutions, this new set of triangular functions provides piecewise linear solution with less mean integral squared error (MISE). After introducing the rich background of PCOF family, which includes Walsh, block pulse and other related functions, fundamentals of the newly proposed set – such as basic properties, function approximation, integral operational metrics, etc. – are presented. This set has been used for integration of functions, analysis and synthesis of dynamic systems and solution of integral equations. The study ends with microprocessor based simulation of SISO control systems using sample-and-hold functions and Dirac delta functions.
This Encyclopedia of Control Systems, Robotics, and Automation is a component of the global Encyclopedia of Life Support Systems EOLSS, which is an integrated compendium of twenty one Encyclopedias. This 22-volume set contains 240 chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It is the only publication of its kind carrying state-of-the-art knowledge in the fields of Control Systems, Robotics, and Automation and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.
This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.
This book introduces a new set of orthogonal hybrid functions (HF) which approximates time functions in a piecewise linear manner which is very suitable for practical applications. The book presents an analysis of different systems namely, time-invariant system, time-varying system, multi-delay systems---both homogeneous and non-homogeneous type- and the solutions are obtained in the form of discrete samples. The book also investigates system identification problems for many of the above systems. The book is spread over 15 chapters and contains 180 black and white figures, 18 colour figures, 85 tables and 56 illustrative examples. MATLAB codes for many such examples are included at the end of the book.
H... control theory is a subject that deals with the minimisation of the H... norm of the transfer matrix from an exogenous disturbance to a pertinent controlled output of a given plant. H... Control and Its Applications examines both the theoretical and practical aspects of H... control from the angle of the structural properties of linear systems. Constructive algorithms for finding solutions to general singular H... control problems are presented, as well as solutions to general H... almost disturbance decoupling problems, and the applications of the theory to real-life problems with actual implementations is also presented. The book deals with all such issues for general continuous - and discrete-time systems. The book can be used in graduate courses in departments of aeronautics and astronautics, applied mathematics, chemical engineering, electrical engineering and mechanical engineering. It is also invaluable for practising engineers in industry.
This book constitues the refereed proceedings of the 6th International Workshop on Hybrid Systems: Computation and Control, HSCC 2003, held in Prague, Czech Republic, in April 2003. The 36 revised full papers presented were carefully reviewed and selected from 75 submissions. All current issues in hybrid systems are addressed including formal methods for analysis and control, computational tools, as well as innovative applications in various fields such as automotive control, the immune system, electrical circuits, operating systems, and human brains.
This volume contains the proceedings of the Sixth Workshop on Hybrid Systems: Computation and Control (HSCC 2003), which was held in Prague, during April 3–5, 2003. The Hybrid Systems workshops attract researchers interested in the modeling, analysis, control, and implementation of systems which involve the interaction of both discrete and continuous state dynamics. The newest results and latest developments in hybrid system models, formal methods for analysis and control, computational tools, as well as new applications and examples are presented at these annual meetings. The Sixth Workshop continued the series of workshops held in Grenoble, France (HART’97), Berkeley, California, USA (HSCC’98), Nijmegen, The Neth- lands (HSCC’99), Pittsburgh, Pennsylvania, USA (HSCC 2000), Rome, Italy (HSCC 2001), and Stanford, California, USA (HSCC 2002). Proceedings of these workshops have been published by Springer-Verlag in the Lecture Notes in C- puter Science (LNCS) series. This year we assembled a technical program committee with a broad expertise in formal methods in computer science, control theory, applied mathematics, and arti?cial intelligence. We received a set of 75 high-quality submitted papers. After detailed review and discussion of these papers by the program committee, 36 papers were accepted for presentation at the workshop, and the ?nal versions of these papers appear in this volume.