Based on his own work, the author synthesizes the most promising approaches and ideals in field theory today. He presents such subjects as statistical mechanics, quantum field theory and their interrelation, continuous global symmetry, non-Abelian gauge fields, instantons and the quantam theory of loops, and quantum strings and random surfaces. This book is aimed at postgraduate students studying field theory and statistical mechanics, and for research workers in continuous global theory.
Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.
Designed as a sequel to the authors' Introduction to Gauge Field Theory, Supersymmetric Gauge Field Theory and String Theory introduces first-year graduate students to supersymmetric theories, including supergravity and superstring theories. Starting with the necessary background in quantum field theory, the book covers the three key topics of high-energy physics. The emphasis is on practical calculations rather than abstract generalities or phenomenological results. Where possible, the authors show how to calculate, connecting the theoretical with the phenomenological. While the field continues to advance and grow, this book addresses the basic theory at the core and will likely remain relevant even if more advanced ideas change.
A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.
From the reviews: "... focused mainly on complex differential geometry and holomorphic bundle theory. This is a powerful book, written by a very distinguished contributor to the field" (Contemporary Physics )"the book provides a large amount of background for current research across a spectrum of field. ... requires effort to read but it is worthwhile and rewarding" (New Zealand Math. Soc. Newsletter) " The contents are highly technical and the pace of the exposition is quite fast. Manin is an outstanding mathematician, and writer as well, perfectly at ease in the most abstract and complex situation. With such a guide the reader will be generously rewarded!" (Physicalia) This new edition includes an Appendix on developments of the last 10 years, by S. Merkulov.
This monograph discusses specific examples of selfdual gauge field structures, including the Chern–Simons model, the abelian–Higgs model, and Yang–Mills gauge field theory. The author builds a foundation for gauge theory and selfdual vortices by introducing the basic mathematical language of gauge theory and formulating examples of Chern–Simons–Higgs theories (in both abelian and non-abelian settings). Thereafter, the Electroweak theory and self-gravitating Electroweak strings are examined. The final chapters treat elliptic problems involving Chern–Simmons models, concentration-compactness principles, and Maxwell–Chern–Simons vortices.
This volume covers the most up-to-date findings on string field theory. It is presented in a new approach as a result of insights gained from the theory. This includes the use of a universal method for treating free field theories, which allows the derivation of a single, simple, free, local, Poincare-invariant, gauge-invariant action that can be applied directly to any fields.
First Published in 2018. The emphasis of the book is calculational, and most computations are presented in step-by-step detail. The book is unique in that it develops all three representations of quantum field theory (operator, functional Schr dinger, and path integral) for point particles and strings. In many cases, identical results are worked out in each representation to emphasize the representation-independent structures of quantum field theory
This volume is a collection of dedicated reviews covering all aspects of theoretical high energy physics and some aspects of solid state physics. Some of the papers are broad reviews of topics that span the entire field while others are surveys of authors' personal achievements. This is the most comprehensive review collection reflecting state of the art at the end of 2004. An important and unique aspect is a special effort the authors have invested in making the presentation pedagogical.