Pounder's Marine Diesel Engines and Gas Turbines

Pounder's Marine Diesel Engines and Gas Turbines

Author: Malcolm Latarche

Publisher: Butterworth-Heinemann

Published: 2020-12-01

Total Pages: 958

ISBN-13: 0081027850

DOWNLOAD EBOOK

Pounder's Marine Diesel Engines and Gas Turbines, Tenth Edition, gives engineering cadets, marine engineers, ship operators and managers insights into currently available engines and auxiliary equipment and trends for the future. This new edition introduces new engine models that will be most commonly installed in ships over the next decade, as well as the latest legislation and pollutant emissions procedures. Since publication of the last edition in 2009, a number of emission control areas (ECAs) have been established by the International Maritime Organization (IMO) in which exhaust emissions are subject to even more stringent controls. In addition, there are now rules that affect new ships and their emission of CO2 measured as a product of cargo carried. - Provides the latest emission control technologies, such as SCR and water scrubbers - Contains complete updates of legislation and pollutant emission procedures - Includes the latest emission control technologies and expands upon remote monitoring and control of engines


Diesel and Gasoline Engine Exhausts and Some Nitroarenes

Diesel and Gasoline Engine Exhausts and Some Nitroarenes

Author: IARC Working Group on the Evaluation of Carcinogenic Risks to Humans

Publisher: IARC Monographs on the Evaluat

Published: 2015-06-04

Total Pages: 0

ISBN-13: 9789283213284

DOWNLOAD EBOOK

This volume of the IARC Monographs provides evaluations of the carcinogenicity of diesel and gasoline engine exhausts, and of 10 nitroarenes found in diesel engine exhaust: 3,7-dinitrofluoranthene, 3,9-dinitrofluoranthene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 6-nitrochrysene, 2-nitrofluorene, 1-nitropyrene, 4-nitropyrene, and 3-nitrobenzanthrone. Diesel engines are used for transport on and off roads (e.g. passenger cars, buses, trucks, trains, ships), for machinery in various industrial sectors (e.g. mining, construction), and for electricity generators, particularly in developing countries. Gasoline engines are used in cars and hand-held equipment (e.g. chainsaws). The emissions from such combustion engines comprise a complex and varying mixture of gases (e.g. carbon monoxide, nitrogen oxides), particles (e.g. PM10, PM2.5, ultrafine particles, elemental carbon, organic carbon, ash, sulfate, and metals), volatile organic compunds (e.g. benzene, formaldehyde) and semi-volatile organic compounds (e.g. polycyclic aromatic hydrocarbons) including oxygenated and nitrated derivatives of polycyclic aromatic hydrocarbons. Diesel and gasoline engines thus make a significant contribution to a broad range of air pollutants to which people are exposed in the general population as well as in different occupational settings. An IARC Monographs Working Group reviewed epidemiological evidence, animal bioassays, and mechanistic and other relevant data to reach conclusions as to the carcinogenic hazard to humans of environmental or occupational exposure to diesel and gasoline engine exhausts (including those associated with the mining, railroad, construction, and transportation industries) and to 10 selected nitroarenes. -- Back cover.


Automotive Fuels Reference Book

Automotive Fuels Reference Book

Author: Paul Richards

Publisher: SAE International

Published: 2014-03-05

Total Pages: 870

ISBN-13: 0768006384

DOWNLOAD EBOOK

The first two editions of this title, published by SAE International in 1990 and 1995, have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited new edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine. This book pulls together in a single, extensively referenced volume, the three different but related topics of automotive fuels, fuel additives, and engines, and shows how all three areas work together. It includes a brief history of automotive fuels development, followed by chapters on automotive fuels manufacture from crude oil and other fossil sources. One chapter is dedicated to the manufacture of automotive fuels and fuel blending components from renewable sources. The safe handling, transport, and storage of fuels, from all sources, are covered. New combustion systems to achieve reduced emissions and increased efficiency are discussed, and the way in which the fuels’ physical and chemical characteristics affect these combustion processes and the emissions produced are included. There is also discussion on engine fuel system development and how these different systems affect the corresponding fuel requirements. Because the book is for a global market, fuel system technologies that only exist in the legacy fleet in some markets are included. The way in which fuel requirements are developed and specified is discussed. This covers test methods from simple laboratory bench tests, through engine testing, and long-term test procedures.


Gas and Oil Engines Simply Explained

Gas and Oil Engines Simply Explained

Author: Walter C. Runciman

Publisher: TGS Publishing

Published: 2008-11-17

Total Pages: 92

ISBN-13: 9781610333023

DOWNLOAD EBOOK

MY object in placing this handbook before the reader is to provide him with a simple and straightforward explanation of how and why a gas engine, or an oil engine, works. The main features and peculiarities in the construction of these engines are described, while the methods and precautions necessary to arrive at desirable results are detailed as fully as the limited space permits.I have aimed at supplying just that information which my experience shows is most needed by the user and by the amateur builder of small power engines. In place of giving a mere list of common engine troubles and their remedies, I have thought it better to endeavour to explain thoroughly the fundamental principles and essentials of good running, so that should any difficulty arise, the engine attendant will be able to reason out for himself the cause of the trouble, and will thus know the proper remedy to apply. This will give him a command over his engine which should render him equal to any emergency. Large 12 point font


Small Gas Engines

Small Gas Engines

Author: Alfred C. Roth

Publisher: Goodheart-Wilcox Publisher

Published: 2000

Total Pages: 0

ISBN-13: 9781566375740

DOWNLOAD EBOOK

The text element in a teaching package that includes a teacher's manual, a workbook, and videos. Provides information about engines with one, two, or three cylinders; two-cycle and four-cycle engines; and diesel and LPG engines. The course is designed to prepare readers to work in the field and/or obtain certification. The illustrations are excelle


Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Author: National Research Council

Publisher: National Academies Press

Published: 2011-06-03

Total Pages: 373

ISBN-13: 0309216389

DOWNLOAD EBOOK

Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.