Game Theory 101: The Complete Textbook is a no-nonsense, games-centered introduction to strategic form (matrix) and extensive form (game tree) games. From the first lesson to the last, this textbook introduces games of increasing complexity and then teaches the game theoretical tools necessary to solve them. Quick, efficient, and to the point, Game Theory 101: The Complete Textbook is perfect for introductory game theory, intermediate microeconomics, and political science.
This book presents the basics of game theory both on an undergraduate level and on a more advanced mathematical level. It covers topics of interest in game theory, including cooperative game theory. Every chapter includes a problem section.
The definitive introduction to game theory This comprehensive textbook introduces readers to the principal ideas and applications of game theory, in a style that combines rigor with accessibility. Steven Tadelis begins with a concise description of rational decision making, and goes on to discuss strategic and extensive form games with complete information, Bayesian games, and extensive form games with imperfect information. He covers a host of topics, including multistage and repeated games, bargaining theory, auctions, rent-seeking games, mechanism design, signaling games, reputation building, and information transmission games. Unlike other books on game theory, this one begins with the idea of rationality and explores its implications for multiperson decision problems through concepts like dominated strategies and rationalizability. Only then does it present the subject of Nash equilibrium and its derivatives. Game Theory is the ideal textbook for advanced undergraduate and beginning graduate students. Throughout, concepts and methods are explained using real-world examples backed by precise analytic material. The book features many important applications to economics and political science, as well as numerous exercises that focus on how to formalize informal situations and then analyze them. Introduces the core ideas and applications of game theory Covers static and dynamic games, with complete and incomplete information Features a variety of examples, applications, and exercises Topics include repeated games, bargaining, auctions, signaling, reputation, and information transmission Ideal for advanced undergraduate and beginning graduate students Complete solutions available to teachers and selected solutions available to students
Computer science and economics have engaged in a lively interaction over the past fifteen years, resulting in the new field of algorithmic game theory. Many problems that are central to modern computer science, ranging from resource allocation in large networks to online advertising, involve interactions between multiple self-interested parties. Economics and game theory offer a host of useful models and definitions to reason about such problems. The flow of ideas also travels in the other direction, and concepts from computer science are increasingly important in economics. This book grew out of the author's Stanford University course on algorithmic game theory, and aims to give students and other newcomers a quick and accessible introduction to many of the most important concepts in the field. The book also includes case studies on online advertising, wireless spectrum auctions, kidney exchange, and network management.
This book is an introduction to mathematical game theory, which might better be called the mathematical theory of conflict and cooperation. It is applicable whenever two individuals—or companies, or political parties, or nations—confront situations where the outcome for each depends on the behavior of all. What are the best strategies in such situations? If there are chances of cooperation, with whom should you cooperate, and how should you share the proceeds of cooperation? Since its creation by John von Neumann and Oskar Morgenstern in 1944, game theory has shed new light on business, politics, economics, social psychology, philosophy, and evolutionary biology. In this book, its fundamental ideas are developed with mathematics at the level of high school algebra and applied to many of these fields (see the table of contents). Ideas like “fairness” are presented via axioms that fair allocations should satisfy; thus the reader is introduced to axiomatic thinking as well as to mathematical modeling of actual situations.
This advanced text introduces the principles of noncooperative game theory in a direct and uncomplicated style that will acquaint students with the broad spectrum of the field while highlighting and explaining what they need to know at any given point. This advanced text introduces the principles of noncooperative game theory—including strategic form games, Nash equilibria, subgame perfection, repeated games, and games of incomplete information—in a direct and uncomplicated style that will acquaint students with the broad spectrum of the field while highlighting and explaining what they need to know at any given point. The analytic material is accompanied by many applications, examples, and exercises. The theory of noncooperative games studies the behavior of agents in any situation where each agent's optimal choice may depend on a forecast of the opponents' choices. "Noncooperative" refers to choices that are based on the participant's perceived selfinterest. Although game theory has been applied to many fields, Fudenberg and Tirole focus on the kinds of game theory that have been most useful in the study of economic problems. They also include some applications to political science. The fourteen chapters are grouped in parts that cover static games of complete information, dynamic games of complete information, static games of incomplete information, dynamic games of incomplete information, and advanced topics.
Clear, accessible treatment of mathematical models for resolving conflicts in politics, economics, war, business, and social relationships. Topics include strategy, game tree and game matrix, and much more. Minimal math background required. 1970 edition.
The outstanding feature of this book is that it provides a unified account of three types of decision problem. It covers the basic ideas of decision theory, classical game theory, and evolutionary game theory in one volume. No background knowledge of economics or biology is required as examples have been carefully selected for their accessibility. Detailed solutions to the numerous exercises are provided at the back of the book, making it ideal for self-study. This introduction to game theory is intended as a first course for undergraduate students of mathematics, but it will also interest advanced students or researchers in biology and economics.
Noncooperative Game Theory is aimed at students interested in using game theory as a design methodology for solving problems in engineering and computer science. João Hespanha shows that such design challenges can be analyzed through game theoretical perspectives that help to pinpoint each problem's essence: Who are the players? What are their goals? Will the solution to "the game" solve the original design problem? Using the fundamentals of game theory, Hespanha explores these issues and more. The use of game theory in technology design is a recent development arising from the intrinsic limitations of classical optimization-based designs. In optimization, one attempts to find values for parameters that minimize suitably defined criteria—such as monetary cost, energy consumption, or heat generated. However, in most engineering applications, there is always some uncertainty as to how the selected parameters will affect the final objective. Through a sequential and easy-to-understand discussion, Hespanha examines how to make sure that the selection leads to acceptable performance, even in the presence of uncertainty—the unforgiving variable that can wreck engineering designs. Hespanha looks at such standard topics as zero-sum, non-zero-sum, and dynamics games and includes a MATLAB guide to coding. Noncooperative Game Theory offers students a fresh way of approaching engineering and computer science applications. An introduction to game theory applications for students of engineering and computer science Materials presented sequentially and in an easy-to-understand fashion Topics explore zero-sum, non-zero-sum, and dynamics games MATLAB commands are included
Eminently suited to classroom use as well as individual study, Roger Myerson's introductory text provides a clear and thorough examination of the models, solution concepts, results, and methodological principles of noncooperative and cooperative game theory. Myerson introduces, clarifies, and synthesizes the extraordinary advances made in the subject over the past fifteen years, presents an overview of decision theory, and comprehensively reviews the development of the fundamental models: games in extensive form and strategic form, and Bayesian games with incomplete information. Game Theory will be useful for students at the graduate level in economics, political science, operations research, and applied mathematics. Everyone who uses game theory in research will find this book essential.