Galois Representations and (Phi, Gamma)-Modules

Galois Representations and (Phi, Gamma)-Modules

Author: Peter Schneider

Publisher: Cambridge University Press

Published: 2017-04-20

Total Pages: 157

ISBN-13: 1316991792

DOWNLOAD EBOOK

Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin–Tate extensions of local number fields, and provides an introduction to Lubin–Tate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location.


Galois Representations and (Phi, Gamma)-Modules

Galois Representations and (Phi, Gamma)-Modules

Author: Peter Schneider

Publisher: Cambridge University Press

Published: 2017-04-20

Total Pages: 157

ISBN-13: 110718858X

DOWNLOAD EBOOK

A detailed and self-contained introduction to a key part of local number theory, ideal for graduate students and researchers.


Automorphic Forms and Galois Representations

Automorphic Forms and Galois Representations

Author: Fred Diamond

Publisher: Cambridge University Press

Published: 2014-10-16

Total Pages: 387

ISBN-13: 1107693632

DOWNLOAD EBOOK

Part two of a two-volume collection exploring recent developments in number theory related to automorphic forms and Galois representations.


Automorphic Forms and Galois Representations: Volume 2

Automorphic Forms and Galois Representations: Volume 2

Author: Fred Diamond

Publisher: Cambridge University Press

Published: 2014-10-16

Total Pages: 387

ISBN-13: 1316062341

DOWNLOAD EBOOK

Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume two include curves and vector bundles in p-adic Hodge theory, associators, Shimura varieties, the birational section conjecture, and other topics of contemporary interest.


Abelian l-Adic Representations and Elliptic Curves

Abelian l-Adic Representations and Elliptic Curves

Author: Jean-Pierre Serre

Publisher: CRC Press

Published: 1997-11-15

Total Pages: 203

ISBN-13: 1439863865

DOWNLOAD EBOOK

This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one


Automorphic Forms and Galois Representations: Volume 1

Automorphic Forms and Galois Representations: Volume 1

Author: Fred Diamond

Publisher: Cambridge University Press

Published: 2014-10-16

Total Pages: 0

ISBN-13: 9781107691926

DOWNLOAD EBOOK

Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume one include the Shafarevich Conjecture, effective local Langlands correspondence, p-adic L-functions, the fundamental lemma, and other topics of contemporary interest.


p-adic Differential Equations

p-adic Differential Equations

Author: Kiran S. Kedlaya

Publisher: Cambridge University Press

Published: 2010-06-10

Total Pages: 399

ISBN-13: 1139489208

DOWNLOAD EBOOK

Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.


Galois Theory Through Exercises

Galois Theory Through Exercises

Author: Juliusz Brzeziński

Publisher: Springer

Published: 2018-03-21

Total Pages: 296

ISBN-13: 331972326X

DOWNLOAD EBOOK

This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.


Algebra and Galois Theories

Algebra and Galois Theories

Author: Régine Douady

Publisher: Springer Nature

Published: 2020-07-13

Total Pages: 479

ISBN-13: 3030327965

DOWNLOAD EBOOK

Galois theory has such close analogies with the theory of coverings that algebraists use a geometric language to speak of field extensions, while topologists speak of "Galois coverings". This book endeavors to develop these theories in a parallel way, starting with that of coverings, which better allows the reader to make images. The authors chose a plan that emphasizes this parallelism. The intention is to allow to transfer to the algebraic framework of Galois theory the geometric intuition that one can have in the context of coverings. This book is aimed at graduate students and mathematicians curious about a non-exclusively algebraic view of Galois theory.