Fuzzy Probability and Statistics

Fuzzy Probability and Statistics

Author: James J. Buckley

Publisher: Springer

Published: 2008-09-12

Total Pages: 262

ISBN-13: 3540331905

DOWNLOAD EBOOK

This book combines material from our previous books FP (Fuzzy Probabilities: New Approach and Applications,Physica-Verlag, 2003) and FS (Fuzzy Statistics, Springer, 2004), plus has about one third new results. From FP we have material on basic fuzzy probability, discrete (fuzzy Poisson,binomial) and continuous (uniform, normal, exponential) fuzzy random variables. From FS we included chapters on fuzzy estimation and fuzzy hypothesis testing related to means, variances, proportions, correlation and regression. New material includes fuzzy estimators for arrival and service rates, and the uniform distribution, with applications in fuzzy queuing theory. Also, new to this book, is three chapters on fuzzy maximum entropy (imprecise side conditions) estimators producing fuzzy distributions and crisp discrete/continuous distributions. Other new results are: (1) two chapters on fuzzy ANOVA (one-way and two-way); (2) random fuzzy numbers with applications to fuzzy Monte Carlo studies; and (3) a fuzzy nonparametric estimator for the median.


Fuzzy Probabilities

Fuzzy Probabilities

Author: James J. Buckley

Publisher: Physica

Published: 2012-12-06

Total Pages: 168

ISBN-13: 3642867863

DOWNLOAD EBOOK

In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.


Fuzzy Statistics

Fuzzy Statistics

Author: James J. Buckley

Publisher: Springer

Published: 2013-11-11

Total Pages: 166

ISBN-13: 3540399194

DOWNLOAD EBOOK

1. 1 Introduction This book is written in four major divisions. The first part is the introductory chapters consisting of Chapters 1 and 2. In part two, Chapters 3-11, we develop fuzzy estimation. For example, in Chapter 3 we construct a fuzzy estimator for the mean of a normal distribution assuming the variance is known. More details on fuzzy estimation are in Chapter 3 and then after Chapter 3, Chapters 4-11 can be read independently. Part three, Chapters 12- 20, are on fuzzy hypothesis testing. For example, in Chapter 12 we consider the test Ho : /1 = /10 verses HI : /1 f=- /10 where /1 is the mean of a normal distribution with known variance, but we use a fuzzy number (from Chapter 3) estimator of /1 in the test statistic. More details on fuzzy hypothesis testing are in Chapter 12 and then after Chapter 12 Chapters 13-20 may be read independently. Part four, Chapters 21-27, are on fuzzy regression and fuzzy prediction. We start with fuzzy correlation in Chapter 21. Simple linear regression is the topic in Chapters 22-24 and Chapters 25-27 concentrate on multiple linear regression. Part two (fuzzy estimation) is used in Chapters 22 and 25; and part 3 (fuzzy hypothesis testing) is employed in Chapters 24 and 27. Fuzzy prediction is contained in Chapters 23 and 26. A most important part of our models in fuzzy statistics is that we always start with a random sample producing crisp (non-fuzzy) data.


Fuzzy Statistical Inferences Based on Fuzzy Random Variables

Fuzzy Statistical Inferences Based on Fuzzy Random Variables

Author: Gholamreza Hesamian

Publisher: CRC Press

Published: 2022

Total Pages: 288

ISBN-13: 9781003248644

DOWNLOAD EBOOK

This book presents the most commonly used techniques for the most statistical inferences based on fuzzy data. It brings together many of the main ideas used in statistical inferences in one place, based on fuzzy information including fuzzy data. This book covers a much wider range of topics than a typical introductory text on fuzzy statistics. It includes common topics like elementary probability, descriptive statistics, hypothesis tests, one-way ANOVA, control-charts, reliability systems and regression models The reader is assumed to know calculus and a little fuzzy set theory. The conventional knowledge of probability and statistics is required. Key Features: Includes example in Mathematica and MATLAB. Contains theoretical and applied exercises for each section. Presents various popular methods for analyzing fuzzy data. The book is suitable for students and researchers in statistics, social science, engineering, and economics, and it can be used at graduate and P.h.D level. Gholamreza Hesamian is Associate Professor of Statistics at Payame Noor University. His research areas include decision theory, probability theory, fuzzy mathematics, and statistics.


Statistical Methods for Fuzzy Data

Statistical Methods for Fuzzy Data

Author: Reinhard Viertl

Publisher: John Wiley & Sons

Published: 2011-01-25

Total Pages: 199

ISBN-13: 0470974567

DOWNLOAD EBOOK

Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy measurement results. Furthermore, statistical methods are then generalized to the analysis of fuzzy data and fuzzy a-priori information. Key Features: Provides basic methods for the mathematical description of fuzzy data, as well as statistical methods that can be used to analyze fuzzy data. Describes methods of increasing importance with applications in areas such as environmental statistics and social science. Complements the theory with exercises and solutions and is illustrated throughout with diagrams and examples. Explores areas such quantitative description of data uncertainty and mathematical description of fuzzy data. This work is aimed at statisticians working with fuzzy logic, engineering statisticians, finance researchers, and environmental statisticians. It is written for readers who are familiar with elementary stochastic models and basic statistical methods.


Plithogeny, Plithogenic Set, Logic, Probability, and Statistics

Plithogeny, Plithogenic Set, Logic, Probability, and Statistics

Author: Florentin Smarandache

Publisher: Infinite Study

Published: 2017-10-01

Total Pages: 143

ISBN-13:

DOWNLOAD EBOOK

We introduce for the first time the concept of plithogeny in philosophy and, as a derivative, the concepts of plithogenic set / logic / probability / statistics in mathematics and engineering – and the degrees of contradiction (dissimilarity) between the attributes’ values that contribute to a more accurate construction of plithogenic aggregation operators and to the plithogenic relationship of inclusion (partial ordering).


Fundamentals of Statistics with Fuzzy Data

Fundamentals of Statistics with Fuzzy Data

Author: Hung T. Nguyen

Publisher: Springer

Published: 2006-02-28

Total Pages: 0

ISBN-13: 3540316973

DOWNLOAD EBOOK

This book presents basic aspects for a theory of statistics with fuzzy data, together with a set of practical applications. Theories of fuzzy logic and of random closed sets are used as basic ingredients in building statistical concepts and procedures in the context of imprecise data, including coarse data analysis. The book aims at motivating statisticians to examine fuzzy statistics to enlarge the domain of applicability of statistics in general.


Soft Methods in Probability, Statistics and Data Analysis

Soft Methods in Probability, Statistics and Data Analysis

Author: Przemyslaw Grzegorzewski

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 376

ISBN-13: 3790817732

DOWNLOAD EBOOK

Classical probability theory and mathematical statistics appear sometimes too rigid for real life problems, especially while dealing with vague data or imprecise requirements. These problems have motivated many researchers to "soften" the classical theory. Some "softening" approaches utilize concepts and techniques developed in theories such as fuzzy sets theory, rough sets, possibility theory, theory of belief functions and imprecise probabilities, etc. Since interesting mathematical models and methods have been proposed in the frameworks of various theories, this text brings together experts representing different approaches used in soft probability, statistics and data analysis.


Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables

Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables

Author: Shoumei Li

Publisher: Springer Science & Business Media

Published: 2002-10-31

Total Pages: 414

ISBN-13: 9781402009181

DOWNLOAD EBOOK

This book presents a clear, systematic treatment of convergence theorems of set-valued random variables (random sets) and fuzzy set-valued random variables (random fuzzy sets). Topics such as strong laws of large numbers and central limit theorems, including new results in connection with the theory of empirical processes are covered. The author's own recent developments on martingale convergence theorems and their applications to data processing are also included. The mathematical foundations along with a clear explanation such as Hölmander's embedding theorem, notions of various convergence of sets and fuzzy sets, Aumann integrals, conditional expectations, selection theorems, measurability and integrability arguments for both set-valued and fuzzy set-valued random variables and newly obtained optimizations techniques based on invariant properties are also given.