The Second International Conference on Fuzzy Information and Engineering (ICFIE2007) is a major symposium for scientists, engineers and practitioners in China as well as the world to present their latest results, ideas, developments and applications in all areas of fuzzy information and knowledge engineering. It aims to strengthen relations between industry research laboratories and universities, and to create a primary symposium for world scientists.
This book is the proceedings of the Third Annual Conference on Fuzzy Information and Engineering (ACFIE2008) from Dec. 5-10, 2008 in Haikou, China. The conf- ence proceedingsis published by Springer-Verlag(Advancesin Soft Computing,ISSN: 1615-3871). This year, we have received 155 submissions. Each paper has undergone a rigorous review process. Only high-quality papers are included. The Third Annual Conference on Fuzzy Information and Engineering (ACFIE2008), built on the success of previous conferences,the ACFIE2005 (Guangzhou,China), is a major symposium for scientists, engineers and practitioners in China to present their updated results, ideas, devel- ments and applications in all areas of fuzzy information and engineering. It aims to strengthen relations between industry research laboratoriesand universities, and to c- ate a primary symposium for world scientists in fuzzy ?elds as follows: 1) Fuzzy intelligence, neural networks and optimal; 2) Fuzzy algebra; 3) Fuzzy analysis; 4) Fuzzy systems and logic; 5) Fuzzy topology and measure; 6)Fuzzy probability, control, forecasting and decision-making; 7) Fuzzy clustering and fuzzy algorithms; 8) Application in fuzzy sets; 9) Rough sets and its application; etc. This book contains 80 papers, divided into nine main parts: In Section I, we have 9 papers on “fuzzy intelligence, neural networks and optimal”. In Section II, we have 11 papers on “fuzzy algebra”. In Section III, we have 9 papers on “fuzzy analysis”. In Section IV, we have 9 papers on “fuzzy systems and logic”. In Section V, we have 9 papers on “fuzzy topology and measure”.
Fuzzy logic allows computer programmers to interpret ambiguous commands that ordinary, rigid programs are unable to decipher. For instance, computers can work with words like "tall" and "expensive" rather than 6'5" or $669.95. This book covers the use of fuzzy logic in the information science and information engineering fields.
This book is the proceedings of the Third International Conference on Fuzzy Information and Engineering (ICFIE 2009) held in the famous mountain city Chongqing in Southwestern China, from September 26-29, 2009. Only high-quality papers are included. The ICFIE 2009, built on the success of previous conferences, the ICFIE 2007 (Guangzhou, China), is a major symposium for scientists, engineers and practitioners in the world to present their updated results, ideas, developments and applications in all areas of fuzzy information and engineering. It aims to strengthen relations between industry research laboratories and universities, and to create a primary symposium for world scientists in fuzzy fields as follows: Fuzzy Information; Fuzzy Sets and Systems; Soft Computing; Fuzzy Engineering; Fuzzy Operation Research and Management; Artificial Intelligence; Fuzzy Mathematics and Systems in Applications, etc.
A self-contained treatment of fuzzy systems engineering, offering conceptual fundamentals, design methodologies, development guidelines, and carefully selected illustrative material Forty years have passed since the birth of fuzzy sets, in which time a wealth of theoretical developments, conceptual pursuits, algorithmic environments, and other applications have emerged. Now, this reader-friendly book presents an up-to-date approach to fuzzy systems engineering, covering concepts, design methodologies, and algorithms coupled with interpretation, analysis, and underlying engineering knowledge. The result is a holistic view of fuzzy sets as a fundamental component of computational intelligence and human-centric systems. Throughout the book, the authors emphasize the direct applicability and limitations of the concepts being discussed, and historical and bibliographical notes are included in each chapter to help readers view the developments of fuzzy sets from a broader perspective. A radical departure from current books on the subject, Fuzzy Systems Engineering presents fuzzy sets as an enabling technology whose impact, contributions, and methodology stretch far beyond any specific discipline, making it applicable to researchers and practitioners in engineering, computer science, business, medicine, bioinformatics, and computational biology. Additionally, three appendices and classroom-ready electronic resources make it an ideal textbook for advanced undergraduate- and graduate-level courses in engineering and science.
Fuzzy logic refers to a large subject dealing with a set of methods to characterize and quantify uncertainty in engineering systems that arise from ambiguity, imprecision, fuzziness, and lack of knowledge. Fuzzy logic is a reasoning system based on a foundation of fuzzy set theory, itself an extension of classical set theory, where set membership can be partial as opposed to all or none, as in the binary features of classical logic. Fuzzy logic is a relatively new discipline in which major advances have been made over the last decade or so with regard to theory and applications. Following on from the successful first edition, this fully updated new edition is therefore very timely and much anticipated. Concentration on the topics of fuzzy logic combined with an abundance of worked examples, chapter problems and commercial case studies is designed to help motivate a mainstream engineering audience, and the book is further strengthened by the inclusion of an online solutions manual as well as dedicated software codes. Senior undergraduate and postgraduate students in most engineering disciplines, academics and practicing engineers, plus some working in economics, control theory, operational research etc, will all find this a valuable addition to their bookshelves.
This book is devoted to reporting innovative and significant progress in fuzzy system engineering. Given the maturation of fuzzy logic, this book is dedicated to exploring the recent breakthroughs in fuzziness and soft computing in favour of intelligent system engineering. This monograph presents novel developments of the fuzzy theory as well as interesting applications of the fuzzy logic exploiting the theory to engineer intelligent systems.
Fuzzy logic techniques have had extraordinary growth in various engineering systems. The developments in engineering sciences have caused apprehension in modern years due to high-tech industrial processes with ever-increasing levels of complexity. Advanced Fuzzy Logic Approaches in Engineering Science provides innovative insights into a comprehensive range of soft fuzzy logic techniques applied in various fields of engineering problems like fuzzy sets theory, adaptive neuro fuzzy inference system, and hybrid fuzzy logic genetic algorithms belief networks in industrial and engineering settings. The content within this publication represents the work of particle swarms, fuzzy computing, and rough sets. It is a vital reference source for engineers, research scientists, academicians, and graduate-level students seeking coverage on topics centered on the applications of fuzzy logic in high-tech industrial processes.
The book aims at surveying results in the application of fuzzy sets and fuzzy logic to economics and engineering. New results include fuzzy non-linear regression, fully fuzzified linear programming, fuzzy multi-period control, fuzzy network analysis, each using an evolutionary algorithm; fuzzy queuing decision analysis using possibility theory; fuzzy differential equations; fuzzy difference equations; fuzzy partial differential equations; fuzzy eigenvalues based on an evolutionary algorithm; fuzzy hierarchical analysis using an evolutionary algorithm; fuzzy integral equations. Other important topics covered are fuzzy input-output analysis; fuzzy mathematics of finance; fuzzy PERT (project evaluation and review technique). No previous knowledge of fuzzy sets is needed. The mathematical background is assumed to be elementary calculus.