Fuzzy Models and Algorithms for Pattern Recognition and Image Processing

Fuzzy Models and Algorithms for Pattern Recognition and Image Processing

Author: James C. Bezdek

Publisher: Springer Science & Business Media

Published: 2006-09-28

Total Pages: 786

ISBN-13: 0387245790

DOWNLOAD EBOOK

Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.


Fuzzy Algorithms: With Applications To Image Processing And Pattern Recognition

Fuzzy Algorithms: With Applications To Image Processing And Pattern Recognition

Author: Zheru Chi

Publisher: World Scientific

Published: 1996-10-04

Total Pages: 239

ISBN-13: 9814498858

DOWNLOAD EBOOK

Contents:Introduction:Basic Concepts of Fuzzy SetsFuzzy RelationsFuzzy Models for Image Processing and Pattern RecognitionMembership Functions:IntroductionHeuristic SelectionsClustering ApproachesTuning of Membership FunctionsConcluding RemarksOptimal Image Thresholding:IntroductionThreshold Selection Based on Statistical Decision TheoryNon-fuzzy Thresholding AlgorithmsFuzzy Thresholding AlgorithmUnified Formulation of Three Thresholding AlgorithmsMultilevel ThresholdingApplicationsConcluding RemarksFuzzy Clustering:IntroductionC-Means AlgorithmFuzzy C-Means AlgorithmComparison between Hard and Fuzzy Clustering AlgorithmsCluster ValidityApplicationsConcluding RemarksLine Pattern Matching:IntroductionSimilarity Measures between Line SegmentsBasic Matching AlgorithmDealing with Noisy PatternsDealing with Rotated PatternsApplicationsConcluding RemarksFuzzy Rule-based Systems:IntroductionLearning from ExamplesDecision Tree ApproachFuzzy Aggregation Network ApproachMinimization of Fuzzy RulesDefuzzification and OptimizationApplicationsConcluding RemarksCombined Classifiers:IntroductionVoting SchemesMaximum Posteriori ProbabilityMultilayer Perceptron ApproachFuzzy Measures and Fuzzy IntegralsApplicationsConcluding Remarks Readership: Engineers and computer scientists. keywords:


Rough-Fuzzy Pattern Recognition

Rough-Fuzzy Pattern Recognition

Author: Pradipta Maji

Publisher: John Wiley & Sons

Published: 2012-02-14

Total Pages: 312

ISBN-13: 111800440X

DOWNLOAD EBOOK

Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.


Fuzzy Image Processing and Applications with MATLAB

Fuzzy Image Processing and Applications with MATLAB

Author: Tamalika Chaira

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 232

ISBN-13: 1351834215

DOWNLOAD EBOOK

In contrast to classical image analysis methods that employ "crisp" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge. Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging, and video surveillance, to name a few. Many texts cover the use of crisp sets, but this book stands apart by exploring the explosion of interest and significant growth in fuzzy set image processing. The distinguished authors clearly lay out theoretical concepts and applications of fuzzy set theory and their impact on areas such as enhancement, segmentation, filtering, edge detection, content-based image retrieval, pattern recognition, and clustering. They describe all components of fuzzy, detailing preprocessing, threshold detection, and match-based segmentation. Minimize Processing Errors Using Dynamic Fuzzy Set Theory This book serves as a primer on MATLAB and demonstrates how to implement it in fuzzy image processing methods. It illustrates how the code can be used to improve calculations that help prevent or deal with imprecision—whether it is in the grey level of the image, geometry of an object, definition of an object’s edges or boundaries, or in knowledge representation, object recognition, or image interpretation. The text addresses these considerations by applying fuzzy set theory to image thresholding, segmentation, edge detection, enhancement, clustering, color retrieval, clustering in pattern recognition, and other image processing operations. Highlighting key ideas, the authors present the experimental results of their own new fuzzy approaches and those suggested by different authors, offering data and insights that will be useful to teachers, scientists, and engineers, among others.


Soft Computing Approach to Pattern Recognition and Image Processing

Soft Computing Approach to Pattern Recognition and Image Processing

Author: Ashish Ghosh

Publisher: World Scientific

Published: 2002

Total Pages: 374

ISBN-13: 9789812776235

DOWNLOAD EBOOK

This volume provides a collection of sixteen articles containing review and new material. In a unified way, they describe the recent development of theories and methodologies in pattern recognition, image processing and vision using fuzzy logic, artificial neural networks, genetic algorithms, rough sets and wavelets with significant real life applications. The book details the theory of granular computing and the role of a rough-neuro approach as a way of computing with words and designing intelligent recognition systems. It also demonstrates applications of the soft computing paradigm to case based reasoning, data mining and bio-informatics with a scope for future research. The contributors from around the world present a balanced mixture of current theory, algorithms and applications, making the book an extremely useful resource for students and researchers alike. Contents: Pattern Recognition: Multiple Classifier Systems; Building Decision Trees from the Fourier Spectrum of a Tree Ensemble; Clustering Large Data Sets; Multi-objective Variable String Genetic Classifier: Application to Remote Sensing Imagery; Image Processing and Vision: Dissimilarity Measures Between Fuzzy Sets or Fuzzy Structures; Early Vision: Concepts and Algorithms; Self-organizing Neural Network for Multi-level Image Segmentation; Geometric Transformation by Moment Method with Wavelet Matrix; New Computationally Efficient Algorithms for Video Coding; Soft Computing for Computational Media Aesthetics: Analyzing Video Content for Meaning; Granular Computing and Case Based Reasoning: Towards Granular Multi-agent Systems; Granular Computing and Pattern Recognition; Case Base Maintenance: A Soft Computing Perspective; Real Life Applications: Autoassociative Neural Network Models for Pattern Recognition Tasks in Speech and Image; Protein Structure Prediction Using Soft Computing; Pattern Classification for Biological Data Mining. Readership: Upper level undergraduates, graduates, researchers, academics and industrialists.


Image Processing and Pattern Recognition

Image Processing and Pattern Recognition

Author: Frank Y. Shih

Publisher: John Wiley & Sons

Published: 2010-05-03

Total Pages: 564

ISBN-13: 0470404612

DOWNLOAD EBOOK

A comprehensive guide to the essential principles of image processing and pattern recognition Techniques and applications in the areas of image processing and pattern recognition are growing at an unprecedented rate. Containing the latest state-of-the-art developments in the field, Image Processing and Pattern Recognition presents clear explanations of the fundamentals as well as the most recent applications. It explains the essential principles so readers will not only be able to easily implement the algorithms and techniques, but also lead themselves to discover new problems and applications. Unlike other books on the subject, this volume presents numerous fundamental and advanced image processing algorithms and pattern recognition techniques to illustrate the framework. Scores of graphs and examples, technical assistance, and practical tools illustrate the basic principles and help simplify the problems, allowing students as well as professionals to easily grasp even complicated theories. It also features unique coverage of the most interesting developments and updated techniques, such as image watermarking, digital steganography, document processing and classification, solar image processing and event classification, 3-D Euclidean distance transformation, shortest path planning, soft morphology, recursive morphology, regulated morphology, and sweep morphology. Additional topics include enhancement and segmentation techniques, active learning, feature extraction, neural networks, and fuzzy logic. Featuring supplemental materials for instructors and students, Image Processing and Pattern Recognition is designed for undergraduate seniors and graduate students, engineering and scientific researchers, and professionals who work in signal processing, image processing, pattern recognition, information security, document processing, multimedia systems, and solar physics.


Fuzzy Logic for Image Processing

Fuzzy Logic for Image Processing

Author: Laura Caponetti

Publisher: Springer

Published: 2016-09-16

Total Pages: 141

ISBN-13: 3319441302

DOWNLOAD EBOOK

This book provides an introduction to fuzzy logic approaches useful in image processing. The authors start by introducing image processing tasks of low and medium level such as thresholding, enhancement, edge detection, morphological filters, and segmentation and shows how fuzzy logic approaches apply. The book is divided into two parts. The first includes vagueness and ambiguity in digital images, fuzzy image processing, fuzzy rule based systems, and fuzzy clustering. The second part includes applications to image processing, image thresholding, color contrast enhancement, edge detection, morphological analysis, and image segmentation. Throughout, they describe image processing algorithms based on fuzzy logic under methodological aspects in addition to applicative aspects. Implementations in java are provided for the various applications.


Pattern Recognition with Fuzzy Objective Function Algorithms

Pattern Recognition with Fuzzy Objective Function Algorithms

Author: James C. Bezdek

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 267

ISBN-13: 147570450X

DOWNLOAD EBOOK

The fuzzy set was conceived as a result of an attempt to come to grips with the problem of pattern recognition in the context of imprecisely defined categories. In such cases, the belonging of an object to a class is a matter of degree, as is the question of whether or not a group of objects form a cluster. A pioneering application of the theory of fuzzy sets to cluster analysis was made in 1969 by Ruspini. It was not until 1973, however, when the appearance of the work by Dunn and Bezdek on the Fuzzy ISODATA (or fuzzy c-means) algorithms became a landmark in the theory of cluster analysis, that the relevance of the theory of fuzzy sets to cluster analysis and pattern recognition became clearly established. Since then, the theory of fuzzy clustering has developed rapidly and fruitfully, with the author of the present monograph contributing a major share of what we know today. In their seminal work, Bezdek and Dunn have introduced the basic idea of determining the fuzzy clusters by minimizing an appropriately defined functional, and have derived iterative algorithms for computing the membership functions for the clusters in question. The important issue of convergence of such algorithms has become much better understood as a result of recent work which is described in the monograph.


Introduction to Pattern Recognition

Introduction to Pattern Recognition

Author: Menahem Friedman

Publisher: World Scientific

Published: 1999

Total Pages: 350

ISBN-13: 9789810233129

DOWNLOAD EBOOK

This book is an introduction to pattern recognition, meant for undergraduate and graduate students in computer science and related fields in science and technology. Most of the topics are accompanied by detailed algorithms and real world applications. In addition to statistical and structural approaches, novel topics such as fuzzy pattern recognition and pattern recognition via neural networks are also reviewed. Each topic is followed by several examples solved in detail. The only prerequisites for using this book are a one-semester course in discrete mathematics and a knowledge of the basic preliminaries of calculus, linear algebra and probability theory.


Fuzzy Filters for Image Processing

Fuzzy Filters for Image Processing

Author: Mike Nachtegael

Publisher: Springer

Published: 2013-06-05

Total Pages: 393

ISBN-13: 354036420X

DOWNLOAD EBOOK

The ongoing increase in scale of integration of electronics makes storage and computational power affordable to many applications. Also image process ing systems can benefit from this trend. A variety of algorithms for image processing tasks becomes close at hand. From the whole range of possible approaches, those based on fuzzy logic are the ones this book focusses on. A particular useful property of fuzzy logic techniques is their ability to represent knowledge in a way which is comprehensible to human interpretation. The theory of fuzzy sets and fuzzy logic was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from mem bership to nonmembership, providing partial degrees of membership. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. The present book resulted from the workshop "Fuzzy Filters for Image Processing" which was organized at the 10th FUZZ-IEEE Conference in Mel bourne, Australia. At this event several speakers have given an overview of the current state-of-the-art of fuzzy filters for image processing. Afterwards, the book has been completed with contributions of other international re searchers.