Fundamentals of Spin Exchange

Fundamentals of Spin Exchange

Author: Kev M. Salikhov

Publisher: Springer Nature

Published: 2019-11-11

Total Pages: 275

ISBN-13: 3030268225

DOWNLOAD EBOOK

This book is a comprehensive summary of 50 years of research from theoretical predictions to experimental confirmation of the manifestation of spin exchange in EPR spectroscopy. The author unfolds the details of comprehensive state of the art of theoretical calculations, which have been proven to become the core of the paradigm shift in spin exchange and set the direction for the future of spin exchange research. The book refers to important experimental data that confirms the theory. It describes the modern protocol for determining the bi-molecular spin exchange rate from the EPR spectra, which will be especially interesting for experimentalists. Given its scope, the book will benefit all researchers engaged in theory and experiments in the area of spin exchange and its manifestations in EPR spectroscopy, where many remarkable applications of the spin probe have been developed.


Fundamentals of Picoscience

Fundamentals of Picoscience

Author: Klaus D. Sattler

Publisher: CRC Press

Published: 2013-09-26

Total Pages: 766

ISBN-13: 1466505095

DOWNLOAD EBOOK

Now ubiquitous in public discussions about cutting-edge science and technology, nanoscience has generated many advances and inventions, from the development of new quantum mechanical methods to far-reaching applications in electronics and medical diagnostics. Ushering in the next technological era, Fundamentals of Picoscience focuses on the instrumentation and experiments emerging at the picometer scale. One picometer is the length of a trillionth of a meter. Compared to a human cell of typically ten microns, this is roughly ten million times smaller. In this state-of-the-art book, international scientists and researchers at the forefront of the field present the materials and methods used at the picoscale. They address the key challenges in developing new instrumentation and techniques to visualize and measure structures at this sub-nanometer level. With numerous figures, the book will help you: Understand how picoscience is an extension of nanoscience Determine which experimental technique to use in your research Connect basic studies to the development of next-generation picoelectronic devices The book covers various approaches for detecting, characterizing, and imaging at the picoscale. It then presents picoscale methods ranging from scanning tunneling microscopy (STM) to spectroscopic approaches at sub-nanometer spatial and energy resolutions. It also covers novel picoscale structures and picometer positioning systems. The book concludes with picoscale device applications, including single molecule electronics and optical computers. Introductions in each chapter explain basic concepts, define technical terms, and give context to the main material.


Spin Current

Spin Current

Author: Sadamichi Maekawa

Publisher: Oxford University Press

Published: 2017

Total Pages: 541

ISBN-13: 0198787073

DOWNLOAD EBOOK

In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.


Fundamentals of NMR and MRI

Fundamentals of NMR and MRI

Author: Fatemeh Khashami

Publisher: Springer Nature

Published: 2024-01-28

Total Pages: 233

ISBN-13: 3031479769

DOWNLOAD EBOOK

This book bridges the gap between physical foundations and medical applications of the NMR and MRI technologies, making them accessible to both physicists and biomedical scientists. The physical basis of these technologies is discussed in a manner that can be easily understood by scientists from different backgrounds, aiding them in gaining a clearer understanding of the subject.. For instance, the medical applications of NMR and MRI technologies are described in a way that is accessible to physicists. Moreover, geometrical descriptions and specific mathematical tools are used to facilitate the visualizations of many concepts. Furthermore, the book covers modern technologies such as hyperpolarization and several other state-of-the-art techniques, along with their foundations.


Fundamentals of Magnonics

Fundamentals of Magnonics

Author: Sergio M. Rezende

Publisher: Springer Nature

Published: 2020-07-31

Total Pages: 372

ISBN-13: 3030413179

DOWNLOAD EBOOK

Fundamentals of Magnonics is a textbook for beginning graduate students in the areas of magnetism and spintronics. The level of presentation assumes only basic knowledge of the origin of magnetism and electromagnetism, and quantum mechanics. The book utilizes elementary mathematical derivations, aimed mainly at explaining the physical concepts involved in the phenomena studied and enabling a deeper understanding of the experiments presented. Key topics include the basic phenomena of ferromagnetic resonance in bulk materials and thin films, semi-classical theory of spin waves, quantum theory of spin waves and magnons, magnons in antiferromagnets, parametric excitation of magnons, nonlinear and chaotic phenomena, Bose-Einstein condensation of magnons, and magnon spintronics. Featuring end-of-chapter problem sets accompanied by extensive contemporary and historical references, this book provides the essential tools for any graduate or advanced undergraduate-level course of studies on the emerging field of magnonics.


Fundamentals of Many-body Physics

Fundamentals of Many-body Physics

Author: Wolfgang Nolting

Publisher: Springer Science & Business Media

Published: 2009-03-02

Total Pages: 607

ISBN-13: 354071930X

DOWNLOAD EBOOK

The goal of the present course on “Fundamentals of Theoretical Physics” is to be a direct accompaniment to the lower-division study of physics, and it aims at providing the ph- ical tools in the most straightforward and compact form as needed by the students in order to master theoretically more complex topics and problems in advanced studies and in research. The presentation is thus intentionally designed to be suf?ciently detailed and self-contained – sometimes, admittedly, at the cost of a certain elegance – to permit in- vidual study without reference to the secondary literature. This volume deals with the quantum theory of many-body systems. Building upon a basic knowledge of quantum mechanics and of statistical physics, modern techniques for the description of interacting many-particle systems are developed and applied to various real problems, mainly from the area of solid-state physics. A thorough revision should guarantee that the reader can access the relevant research literature without experiencing major problems in terms of the concepts and vocabulary, techniques and deductive methods found there. The world which surrounds us consists of very many particles interacting with one another, and their description requires in principle the solution of a corresponding number ofcoupledquantum-mechanicalequationsofmotion(Schrodinger ̈ equations),which,h- ever, is possible only in exceptional cases in a mathematically strict sense. The concepts of elementary quantum mechanics and quantum statistics are therefore not directly applicable in the form in which we have thus far encountered them. They require an extension and restructuring, which is termed “many-body theory”.


Handbook of Spintronics

Handbook of Spintronics

Author: Yongbing Xu

Publisher: Springer

Published: 2015-10-14

Total Pages: 0

ISBN-13: 9789400768918

DOWNLOAD EBOOK

Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.