This book examines the effects of spaceflight at cellular and organism levels. Research on the effects of gravity - or its absence - and ionizing radiation on the evolution, development, and function of living organisms is presented in layman's terms. The book describes the benefits of space biology for basic and applied research to support human space exploration and the advantages of space as a laboratory for scientific, technological, and commercial research.
Fundamentals of Space Systems was developed to satisfy two objectives: the first is to provide a text suitable for use in an advanced undergraduate or beginning graduate course in both space systems engineering and space system design. The second is to be a primer and reference book for space professionals wishing to broaden their capabilities to develop, manage the development, or operate space systems. The authors of the individual chapters are practicing engineers that have had extensive experience in developing sophisticated experimental and operational spacecraft systems in addition to having experience teaching the subject material. The text presents the fundamentals of all the subsystems of a spacecraft missions and includes illustrative examples drawn from actual experience to enhance the learning experience. It includes a chapter on each of the relevant major disciplines and subsystems including space systems engineering, space environment, astrodynamics, propulsion and flight mechanics, attitude determination and control, power systems, thermal control, configuration management and structures, communications, command and telemetry, data processing, embedded flight software, survuvability and reliability, integration and test, mission operations, and the initial conceptual design of a typical small spacecraft mission.
This readable text presents findings from the life science experiments conducted during and after space missions. It provides an insight into the space medical community and the real challenges that face the flight surgeon and life science investigator.
The breakup of the Space Shuttle Columbia as it reentered Earth's atmosphere on February 1, 2003, reminded the public--and NASA--of the grave risks posed to spacecraft by everything from insulating foam to space debris. Here, Alan Tribble presents a singular, up-to-date account of a wide range of less conspicuous but no less consequential environmental effects that can damage or cause poor performance of orbiting spacecraft. Conveying a wealth of insight into the nature of the space environment and how spacecraft interact with it, he covers design modifications aimed at eliminating or reducing such environmental effects as solar absorptance increases caused by self-contamination, materials erosion by atomic oxygen, electrical discharges due to spacecraft charging, degradation of electrical circuits by radiation, and bombardment by micrometeorites. This book is unique in that it bridges the gap between studies of the space environment as performed by space physicists and spacecraft design engineering as practiced by aerospace engineers.
As commercial and military spacecraft become more important to the world's economy and defense, and as new scientific and exploratory missions are launched into space, the need for a single comprehensive resource on spacecraft charging becomes increasingly critical. Fundamentals of Spacecraft Charging is the first and only textbook to bring together all the necessary concepts and equations for a complete understanding of the subject. Written by one of the field's leading authorities, this essential reference enables readers to fully grasp the newest ideas and underlying physical mechanisms related to the electrostatic charging of spacecraft in the space environment. Assuming that readers may have little or no background in this area, this complete textbook covers all aspects of the field. The coverage is detailed and thorough, and topics range from secondary and backscattered electrons, spacecraft charging in Maxwellian plasmas, effective mitigation techniques, and potential wells and barriers to operational anomalies, meteors, and neutral gas release. Significant equations are derived from first principles, and abundant examples, exercises, figures, illustrations, and tables are furnished to facilitate comprehension. Fundamentals of Spacecraft Charging is the definitive reference on the physics of spacecraft charging and is suitable for advanced undergraduates, graduate-level students, and professional space researchers.
Satellite Earth Observation is a very dynamic field as it is based in sensors, satellite missions, and computer resources, which means that the application areas are continuously evolving and delevoping rapidly. This third edition will cover the most recent advances incorporated since the publication of the previous edition.
This full-color textbook will help students and professionals understand the space environment and its impacts on spacecraft design, engineering, and performance. While the primary emphasis of the book is the Earth's environment and its effects on spacecraft, it also addresses the extraterrestrial environment and the effects of radiation on humans in space. The book begins with an introduction to the history of spacecraft failures, risk management reliability and quality assurance techniques, and parts reliability. It goes on to provide an overview of the structure of the Sun: the structure, origin, and models of the geomagnetic field; gravitational field of the Earth; Earth's magnetosphere and radiation environment; neutral environment including fundamentals of the kinetic theory of gasses; variation of pressure with altitude and hypoxia of humans; electromagnetic propagation; the effect of atomic oxygen of materials; plasma surrounding the Earth; transport and effects of photon
" ... Concise explanations and descriptions - easily read and readily understood - of what we know of the chain of events and processes that connect the Sun to the Earth, with special emphasis on space weather and Sun-Climate."--Dear Reader.