This book describes the physical and chemical effects of radiation interaction with matter. Beginning with the physical basis for the absorption of charged particle radiations, Fundamentals of Radiation Chemistry provides a systematic account of the formation of products, including the nature and properties of intermediate species. Developed from first principles, the coverage of fundamentals and applications will appeal to an interdisciplinary audience of radiation physicists and radiation biologists. Only an undergraduate background in chemistry and physics is assumed as a prerequisite for the understanding of applications in research and industry. - Provides a working knowledge of radiation effects for students and non-experts - Stresses the role of the electron both as a radiation and as a reactant species - Contains clear diagrams of track models - Includes a chapter on applications - Written by an expert with more than thirty years of experience in a premiere research laboratory - Culled from the author's painstaking research of journals and other publications over several decades
Deals with radiation processing as a whole using a chemical perspective. Offers basic information on the procedures taking place and covers radiation dosimetry plus a wide range of actual and potential applications. Provides excellent coverage of radiation processing literature with bibliographies pertaining to key areas of radiation chemistry.
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Origin of Nuclear Science; Nuclei, Isotopes and Isotope Separation; Nuclear Mass and Stability; Unstable Nuclei and Radioactive Decay; Radionuclides in Nature; Absorption of Nuclear Radiation; Radiation Effects on Matter; Detection and Measurement Techniques; Uses of Radioactive Tracers; Cosmic Radiation and Elementary Particles; Nuclear Structure; Energetics of Nuclear Reactions; Particle Accelerators; Mechanics and Models of Nuclear Reactions; Production of Radionuclides; The Transuranium Elements; Thermonuclear Reactions: the Beginning and the Future; Radiation Biology and Radiation Protection; Principles of Nuclear Power; Nuclear Power Reactors; Nuclear Fuel Cycle; Behavior of Radionuclides in the Environment; Appendices; Solvent Extraction Separations; Answers to Exercises; Isotope Chart; Periodic Table of the Elements; Quantities and Units; Fundamental Constants; Energy Conversion Factors; Element and Nuclide Index; Subject Index.
The third edition of this classic in the field is completely updated and revised with approximately 30% new content so as to include the latest developments. The handbook and ready reference comprehensively covers nuclear and radiochemistry in a well-structured and readily accessible manner, dealing with the theory and fundamentals in the first half, followed by chapters devoted to such specific topics as nuclear energy and reactors, radiotracers, and radionuclides in the life sciences. The result is a valuable resource for both newcomers as well as established scientists in the field.
Currently an estimated 17 million nuclear medicine procedures are performed each year in the US and constantly evolving, as new radiopharmaceuticals and imaging techniques are introduced for better diagnosis and treatment of human diseases. In keeping up with new developments, the Seventh Edition of Fundamentals of Nuclear Pharmacy chronicles the advancements in radiopharmaceuticals and their use in clinical applications. It discusses basic concepts such as the atom, radioactive decay, instrumentation and production of radionuclides, and explores the design, labeling, characteristics and quality control of radiopharmaceuticals. Radiation regulations and diagnostic and therapeutic applications of radiopharmaceuticals are detailed. Thoroughly updated, the Seventh Edition includes new topics such as alternative productions of 99Mo; production of 64Cu, 86Y, 89Zr, 177Lu, 223Ra; synthesis and clinical uses of new radiopharmaceuticals such as DaTscan, Xofigo, Amyvid, Neuraceq, Vizamyl, Axumin and 68Ga-DOTATATE; dosimetry of new radiopharmaceuticals; theranostic agents and translational medicine. It features numerous examples, diagrams, and images to further clarify the information and offers end- of-chapter questions to help readers assess their comprehension of the material. Recognized as a classic text on nuclear chemistry and pharmacy and acclaimed for its concise and easy-to-understand presentation, Fundamentals of Nuclear Pharmacy is an authoritative resource for nuclear medicine physicians, residents, students, and technologists.
Radiation processing is widely employed in plastics engineering to enhance the physical properties of polymers, such as chemical resistance, surface properties, mechanical and thermal properties, particle size reduction, melt properties, material compatibility, fire retardation, etc. Drobny introduces readers to the science of ionizing radiation and its effects on polymers, and explores the technologies available and their current and emerging applications. The resulting book is a valuable guide for a wide range of plastics engineers employing ionizing radiation for polymer treatment in a range of sectors including packaging, aerospace, defense, medical devices and energy applications. Radiation resistant polymers are also explored. Unlock the potential of ionizing radiation in applications such as electron-beam curing and laser joining Gain an understanding of the selection and safe use of radiation treatment equipment The only detailed guide to ionizing radiation written for the plastics engineering community
Atomic Radiation and Polymers examines the effects of radiation on polymer materials. The title deals with chemical changes that took place when polymers are exposed to radiation, and how these changes affect the physical properties of the polymers. The text first covers the interaction of radiation and matter, along with radiation sources and dosimetry. Next, the selection deals with the general properties of long chain polymers. The text also details the organic molecules and irradiated polymers. Chapters 22 to 24 tackle the radiation-induced changes in nuclear chain reaction, while Chapter 25 discusses the irradiation of polymers in solution where both direct and indirect effects occur. The next series of chapters details the theoretical aspects of reactions between the initial acts of ionization or excitation. The last two chapters cover the conductivity change at low radiation intensities, along with the data on radiation damage at very high intensities. The book will be of great interest to researchers and practitioners from the field of nuclear science and polymer technology.
Fundamentals of Chemistry, Fourth Edition covers the fundamentals of chemistry. The book describes the formation of ionic and covalent bonds; the Lewis theory of bonding; resonance; and the shape of molecules. The book then discusses the theory and some applications of the four kinds of spectroscopy: ultraviolet, infrared, nuclear (proton) magnetic resonance, and mass. Topics that combine environmental significance with descriptive chemistry, including atmospheric pollution from automobile exhaust; the metallurgy of iron and aluminum; corrosion; reactions involving ozone in the upper atmosphere; and the methods of controlling the pollution of air and water, are also considered. Chemists and students taking courses related to chemistry and environmental chemistry will find the book invaluable.
Impressive in its overall size and scope, this five-volume reference work provides researchers with the tools to push them into the forefront of the latest research. The Handbook covers all of the chemical aspects of nuclear science starting from the physical basics and including such diverse areas as the chemistry of transactinides and exotic atoms as well as radioactive waste management and radiopharmaceutical chemistry relevant to nuclear medicine. The nuclear methods of the investigation of chemical structure also receive ample space and attention. The international team of authors consists of 77 world-renowned experts - nuclear chemists, radiopharmaceutical chemists and physicists - from Austria, Belgium, Germany, Great Britain, Hungary, Holland, Japan, Russia, Sweden, Switzerland and the United States. The Handbook is an invaluable reference for nuclear scientists, biologists, chemists, physicists, physicians practicing nuclear medicine, graduate students and teachers - virtually all who are involved in the chemical and radiopharmaceutical aspects of nuclear science. The Handbook also provides for further reading through its rich selection of references.