Fundamentals of Measurable Dynamics

Fundamentals of Measurable Dynamics

Author: Daniel J. Rudolph

Publisher: Oxford University Press, USA

Published: 1990

Total Pages: 190

ISBN-13:

DOWNLOAD EBOOK

This book is designed to provide graduate students and other researchers in dynamical systems theory with an introduction to the ergodic theory of Lebesgue spaces. The author's aim is to present a technically complete account which offers an in-depth understanding of the techniques of the field, both classical and modern. Thus, the basic structure theorems of Lebesgue spaces are given in detail as well as complete accounts of the ergodic theory of a single transformation, ergodic theorems, mixing properties and entropy. Subsequent chapters extend the earlier material to the areas of joinings and representation theorems, in particular the theorems of Ornstein and Krieger. Prerequisites are a working knowledge of Lebesgue measure and the topology of the real line as might be gained from the first year of a graduate course. Many exercises and examples are included to illustrate and to further cement the reader's understanding of the material. The result is a text which will furnish the reader with a sound technical background from the foundations of the subject to some of its most recent developments.


Dynamical Systems and Ergodic Theory

Dynamical Systems and Ergodic Theory

Author: Mark Pollicott

Publisher: Cambridge University Press

Published: 1998-01-29

Total Pages: 198

ISBN-13: 9780521575997

DOWNLOAD EBOOK

This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).


Applied and Computational Measurable Dynamics

Applied and Computational Measurable Dynamics

Author: Erik M. Bollt

Publisher: SIAM

Published: 2013-12-03

Total Pages: 376

ISBN-13: 1611972639

DOWNLOAD EBOOK

Until recently, measurable dynamics has been held as a highly theoretical mathematical topic with few generally known obvious links for practitioners in areas of applied mathematics. However, the advent of high-speed computers, rapidly developing algorithms, and new numerical methods has allowed for a tremendous amount of progress and sophistication in efforts to represent the notion of a transfer operator discretely but to high resolution. This book connects many concepts in dynamical systems with mathematical tools from areas such as graph theory and ergodic theory. The authors introduce practical tools for applications related to measurable dynamical systems, coherent structures, and transport problems. The new and fast-developing computational tools discussed throughout the book allow for detailed analysis of real-world problems that are simply beyond the reach of traditional methods.


Transfer Operators, Endomorphisms, and Measurable Partitions

Transfer Operators, Endomorphisms, and Measurable Partitions

Author: Sergey Bezuglyi

Publisher: Springer

Published: 2018-06-21

Total Pages: 167

ISBN-13: 3319924176

DOWNLOAD EBOOK

The subject of this book stands at the crossroads of ergodic theory and measurable dynamics. With an emphasis on irreversible systems, the text presents a framework of multi-resolutions tailored for the study of endomorphisms, beginning with a systematic look at the latter. This entails a whole new set of tools, often quite different from those used for the “easier” and well-documented case of automorphisms. Among them is the construction of a family of positive operators (transfer operators), arising naturally as a dual picture to that of endomorphisms. The setting (close to one initiated by S. Karlin in the context of stochastic processes) is motivated by a number of recent applications, including wavelets, multi-resolution analyses, dissipative dynamical systems, and quantum theory. The automorphism-endomorphism relationship has parallels in operator theory, where the distinction is between unitary operators in Hilbert space and more general classes of operators such as contractions. There is also a non-commutative version: While the study of automorphisms of von Neumann algebras dates back to von Neumann, the systematic study of their endomorphisms is more recent; together with the results in the main text, the book includes a review of recent related research papers, some by the co-authors and their collaborators.


Applied and Computational Measurable Dynamics

Applied and Computational Measurable Dynamics

Author: Erik M. Bollt

Publisher: SIAM

Published: 2013-12-03

Total Pages: 376

ISBN-13: 1611972647

DOWNLOAD EBOOK

Until recently, measurable dynamics has been held as a highly theoretcal mathematical topic with few generally known obvious links for practitioners in areas of applied mathematics. However, the advent of high-speed computers, rapidly developing algorithms, and new numerical methods has allowed for a tremendous amount of progress and sophistication in efforts to represent the notion of a transfer operator discretely but to high resolution. This book connects many concepts in dynamical systems with mathematical tools from areas such as graph theory and ergodic theory. The authors introduce practical tools for applications related to measurable dynamical systems, coherent structures, and transport problems. The new and fast-developing computational tools discussed throughout the book allow for detailed analysis of real-world problems that are simply beyond the reach of traditional methods.


Symbolic Dynamics

Symbolic Dynamics

Author: Bruce P. Kitchens

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 263

ISBN-13: 3642588220

DOWNLOAD EBOOK

Nearly one hundred years ago Jacques Hadamard used infinite sequences of symbols to analyze the distribution of geodesics on certain surfaces. That was the beginning of symbolic dynamics. In the 1930's and 40's Arnold Hedlund and Marston Morse again used infinite sequences to investigate geodesics on surfaces of negative curvature. They coined the term symbolic dynamics and began to study sequence spaces with the shift transformation as dynamical systems. In the 1940's Claude Shannon used sequence spaces to describe infor mation channels. Since that time symbolic dynamics has been used in ergodic theory, topological dynamics, hyperbolic dynamics, information theory and complex dynamics. Symbolic dynamical systems with a finite memory are stud ied in this book. They are the topological Markov shifts. Each can be defined by transition rules and the rules can be summarized by a transition matrix. The study naturally divides into two parts. The first part is about topological Markov shifts where the alphabet is finite. The second part is concerned with topological Markov shifts whose alphabet is count ably infinite. The techniques used in the two cases are quite different. When the alphabet is finite most of the methods are combinatorial or algebraic. When the alphabet is infinite the methods are much more analytic. This book grew from notes for a graduate course taught at Wesleyan Uni versity in the fall of 1994 and is intended as a graduate text and as a reference book for mathematicians working in related fields.


An Introduction to Symbolic Dynamics and Coding

An Introduction to Symbolic Dynamics and Coding

Author: Douglas Lind

Publisher: Cambridge University Press

Published: 2021-01-21

Total Pages: 571

ISBN-13: 110882028X

DOWNLOAD EBOOK

Elementary introduction to symbolic dynamics, updated to describe the main advances in the subject since the original publication in 1995.


Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 1885

ISBN-13: 1461418054

DOWNLOAD EBOOK

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.


Measure Theory

Measure Theory

Author: Vladimir I. Bogachev

Publisher: Springer Science & Business Media

Published: 2007-01-15

Total Pages: 1075

ISBN-13: 3540345140

DOWNLOAD EBOOK

This book giving an exposition of the foundations of modern measure theory offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course, and, finally, more specialized topics partly covered by more than 850 exercises with detailed hints and references. Bibliographical comments and an extensive bibliography with 2000 works covering more than a century are provided.


Integral, Measure, and Ordering

Integral, Measure, and Ordering

Author: Beloslav Riecan

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 389

ISBN-13: 9401589194

DOWNLOAD EBOOK

The present book is a monograph including some recent results of mea sure and integration theory. It concerns three main ideas. The first idea deals with some ordering structures such as Riesz spaces and lattice or dered groups, and their relation to measure and integration theory. The second is the idea of fuzzy sets, quite new in general, and in measure theory particularly. The third area concerns some models of quantum mechanical systems. We study mainly models based on fuzzy set theory. Some recent results are systematically presented along with our suggestions for further development. The first chapter has an introductory character, where we present basic definitions and notations. Simultaneously, this chapter can be regarded as an elementary introduction to fuzzy set theory. Chapter 2 contains an original approach to the convergence of sequences of measurable functions. While the notion of a null set can be determined uniquely, the notion of a set of "small" measure has a fuzzy character. It is interesting that the notion of fuzzy set and the notion of a set of small measure (described mathematically by so-called small systems) were introduced independently at almost the same time. Although the axiomatic systems in both theories mentioned are quite different, we show that the notion of a small system can be considered from the point of view of fuzzy sets.