Fundamental Understanding and Materials Design Approaches for Lithium-oxygen Electrochemical Energy Storage

Fundamental Understanding and Materials Design Approaches for Lithium-oxygen Electrochemical Energy Storage

Author: Betar Maurkah Gallant

Publisher:

Published: 2013

Total Pages: 182

ISBN-13:

DOWNLOAD EBOOK

New strategies and materials are needed to increase the energy and power capabilities of lithium storage devices for electric vehicle and grid-scale applications. Systems based on oxygen electrochemistry are promising due to the relatively high potentials (~ 3 V vs. Li) of Li-oxygen redox couples, which can enable high energy to be stored in the absence of heavy and expensive transition metal-based compounds used in conventional Li-ion battery electrodes. This thesis explores two strategies to incorporate Li-oxygen redox electrochemistry into electrodes for high-power or high-energy devices: (1) oxygen functionalization of carbon surfaces for fast surface Li storage, and (2) bulk oxygen reduction and Li storage in Li-air batteries with a theoretical cell-level gravimetric energy up to 4 times higher than Li-ion batteries. First, we study the charge storage mechanisms in oxygen-functionalized multiwalled carbon nanotube (MWNT) positive electrodes for high-power Li batteries. Thin-film (below 3 im) electrodes are used as a platform for probing the kinetics of surface redox reactions between Li+ and oxygen on MWNTs in asymmetric and symmetric cell configurations. We next extend this concept to the development of freestanding electrodes with more practical thicknesses (tens of pm). By varying the MWNT functionalization time, we show that the surface oxygen concentration can be controlled to yield electrodes with tunable energy and power characteristics, with typical gravimetric energies of ~200 Wh/kgelectode at ~10 kW/kgeectrode. The second part of this thesis investigates fundamental and design considerations to enable development of Li-air battery electrodes with high gravimetric energy, improved round-trip efficiency, and increased stability upon cycling. Using aligned carbon nanofiber (CNF) or nanotube (CNT) electrodes synthesized in-house, we report the first observations of Li2O2 particle formation and shape evolution during discharge. Highly porous (> 90% void volume) CNF electrodes achieve one of the highest gravimetric energies (2400 Wh/kgdischarged at 30 W/kgdischarged) to date, demonstrating the role of electrode structure in realizing the theoretical energy advantage of Li-air systems at the laboratory scale. We next use CNT electrodes as a platform for studying chemical and morphological changes occurring in the electrode during cycling, and find that poor cycle life can be attributed to gradual accumulation of parasitic Li2CO3 promoted by reactivity of the carbon substrate. Finally, we study the influence of Li2O2 discharge rate-dependent structure and surface chemistry on the oxidation kinetics to probe the fundamental origins of high overpotentials required on charge. An integrated morphological, chemical, and electrochemical approach highlights new considerations for the design of practical electrodes for increased round-trip efficiency and improved cycle life.


Electrochemical Energy Storage Technologies Beyond Li-ion Batteries

Electrochemical Energy Storage Technologies Beyond Li-ion Batteries

Author: Guanjie He

Publisher: Elsevier

Published: 2024-12-01

Total Pages: 0

ISBN-13: 0443155151

DOWNLOAD EBOOK

Electrochemical Energy Storage Technologies Beyond Li-ion Batteries focuses on an overview of the current research directions to enable the commercial translation of electrochemical energy storage technologies. First, the principles of energy storage mechanisms and device design considerations are introduced. Then, organized by electrochemical energy storage technology, the advances in candidate materials and their path to commercialization and industrialization are discussed. Electrochemical energy storage technologies reviewed include rocking chair batteries, metal-air batteries, redox flow batteries, fuel cells, and supercapacitors. Electrochemical Energy Storage Technologies Beyond Li-ion Batteries is suitable for materials scientists and chemists in academia and industry. It may also be of interest to physicists and energy scientists and practitioners. Provides a thorough overview of candidate materials for electrochemical energy storage technologies, including batteries, fuel cells, and supercapacitors Summarizes fundamental principles of electrochemical energy storage such as energy storage mechanisms, device design considerations, and computational and characterization methods Discusses future opportunities and challenges of recycling of electrochemical energy storage technologies and non-lithium energy storage


Lithium-Ion Batteries

Lithium-Ion Batteries

Author: Xianxia Yuan

Publisher: CRC Press

Published: 2011-12-14

Total Pages: 431

ISBN-13: 1439841284

DOWNLOAD EBOOK

Written by a group of top scientists and engineers in academic and industrial R&D, Lithium-Ion Batteries: Advanced Materials and Technologies gives a clear picture of the current status of these highly efficient batteries. Leading international specialists from universities, government laboratories, and the lithium-ion battery industry share their knowledge and insights on recent advances in the fundamental theories, experimental methods, and research achievements of lithium-ion battery technology. Along with coverage of state-of-the-art manufacturing processes, the book focuses on the technical progress and challenges of cathode materials, anode materials, electrolytes, and separators. It also presents numerical modeling and theoretical calculations, discusses the design of safe and powerful lithium-ion batteries, and describes approaches for enhancing the performance of next-generation lithium-ion battery technology. Due to their high energy density, high efficiency, superior rate capability, and long cycling life, lithium-ion batteries provide a solution to the increasing demands for both stationary and mobile power. With comprehensive and up-to-date information on lithium-ion battery principles, experimental research, numerical modeling, industrial manufacturing, and future prospects, this volume will help you not only select existing materials and technologies but also develop new ones to improve battery performance.


Fundamental Understanding and Design Principles of Oxide/metal Surfaces for Lithium Storage

Fundamental Understanding and Design Principles of Oxide/metal Surfaces for Lithium Storage

Author: Yi-Chun Lu (Ph. D.)

Publisher:

Published: 2012

Total Pages: 149

ISBN-13:

DOWNLOAD EBOOK

Lithium-battery technologies have promising potentials to enable efficient energy distribution, sustainable transportation systems, and the widespread of renewable energy. One of the most critical challenges that limits their further advances is the limited ability to design efficient interfacial and surface chemistries due to the lack of fundamental understanding of reaction mechanisms. This thesis aimed to develop the fundamental understanding and design principles of oxide and metal surfaces for conventional Li-ion batteries and next generation, high-energy Li-air (or Li-O2) batteries. Fundamental approaches involving electrochemical characterizations, advanced spectroscopic and microscopic techniques were used to probe the interfacial and surface reactions of these batteries. The criteria for efficient electrode-electrolyte interfaces for Li-ion batteries were identified by examining the working mechanism of "AlPO4" nanoparticle coatings on enhancing the cycle life and energy efficiency of LiCoO2 batteries. SEM, XRD and XPS revealed that the "AlPO4" nanoparticles promote the formation of Co-Al-O-F species on the LiCoO2 particle surfaces as protection layers against electrolyte decomposition and oxygen loss from the lattice. This highlights the importance of metal oxyfluoride species toward material stability and cell efficiency. The reaction kinetics, catalyst effects and reaction mechanism of Li-O2 batteries were investigated by developing electrochemical model systems i.e., rotating disk electrode and Li2O2-filled composite electrodes, to quantify the intrinsic catalytic activity of nonaqueous oxygen reduction (ORR) and oxygen evolution reactions (OER). We found that the Li+-ORR activity is in order of Pd > Pt > Ru ~ Au > C, exhibiting a volcano-type dependence as a function of the oxygen adsorption energy of the catalyst surface. This volcano dependence suggests that the oxygen adsorption energy of the catalyst can serve as the ORR activity descriptor for designing highly active ORR catalyst for Li-O2 batteries. In addition, the application of Au nanoparticles was found to significantly increase the rate capability of the Li-O2 cells by enhancing the intrinsic ORR activity and influencing the structures of the discharge products. The catalyst effects on the charge reaction (OER), or Li2O2-decomposition reaction, were studied by potentiostatically oxidizing the Li2O2-filled composite electrodes with various catalysts. It is found that the electro-oxidation of Li2O2 can be significantly catalysed by the presence of Pt/C. With insights obtained from the model system studies, we designed bimetallic PtAu nanoparticles as bifunctional catalysts for Li-O2 batteries. Interestingly, the PtAu/C catalyst exhibits similar discharge profile to the Au/C and mirrors the charge activity of the Pt/C catalyst, achieving a remarkable round-trip efficiency (~75%) for rechargeable Li-O2 batteries.


Novel Electrochemical Energy Storage Devices

Novel Electrochemical Energy Storage Devices

Author: Feng Li

Publisher: John Wiley & Sons

Published: 2021-04-26

Total Pages: 338

ISBN-13: 3527821066

DOWNLOAD EBOOK

Novel Electrochemical Energy Storage Devices Explore the latest developments in electrochemical energy storage device technology In Novel Electrochemical Energy Storage Devices, an accomplished team of authors delivers a thorough examination of the latest developments in the electrode and cell configurations of lithium-ion batteries and electrochemical capacitors. Several kinds of newly developed devices are introduced, with information about their theoretical bases, materials, fabrication technologies, design considerations, and implementation presented. You’ll learn about the current challenges facing the industry, future research trends likely to capture the imaginations of researchers and professionals working in industry and academia, and still-available opportunities in this fast-moving area. You’ll discover a wide range of new concepts, materials, and technologies that have been developed over the past few decades to advance the technologies of lithium‐ion batteries, electrochemical capacitors, and intelligent devices. Finally, you’ll find solutions to basic research challenges and the technologies applicable to energy storage industries. Readers will also benefit from the inclusion of: A thorough introduction to energy conversion and storage, and the history and classification of electrochemical energy storage An exploration of materials and fabrication of electrochemical energy storage devices, including categories, EDLCSs, pseudocapacitors, and hybrid capacitors A practical discussion of the theory and characterizations of flexible cells, including their mechanical properties and the limits of conventional architectures A concise treatment of the materials and fabrication technologies involved in the manufacture of flexible cells Perfect for materials scientists, electrochemists, and solid-state chemists, Novel Electrochemical Energy Storage Devices will also earn a place in the libraries of applied physicists, and engineers in power technology and the electrotechnical industry seeking a one-stop reference for portable and smart electrochemical energy storage devices.


Metal-Air and Metal-Sulfur Batteries

Metal-Air and Metal-Sulfur Batteries

Author: Vladimir Neburchilov

Publisher: CRC Press

Published: 2016-09-19

Total Pages: 210

ISBN-13: 1482258544

DOWNLOAD EBOOK

Metal–air and metal–sulfur batteries (MABs/MSBs) represent one of the most efficient-energy storage technologies, with high round trip efficiency, a long life cycle, fast response at peak demand/supply of electricity, and decreased weight due to the use of atmospheric oxygen as one of the main reactants. This book presents an overview of the main MABs/MSBs from fundamentals to applications. Recent technological trends in their development are reviewed. It also offers a detailed analysis of these batteries at the material, component, and system levels, allowing the reader to evaluate the different approaches of their integration. The book provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Each chapter focuses on a particular battery type including zinc–air batteries, lithium–air batteries, aluminum–air batteries, magnesium–air batteries, lithium–sulfur batteries, and vanadium–air redox flow batteries, and metal–sulfur batteries. Features the most recent advances made in metal–air/metal–sulfur batteries. Describes cutting-edge materials and technology for metal–air/metal–sulfur batteries. Includes both fundamentals and applications, which can be used to guide and promote materials as well as technology development for metal–air/metal–sulfur batteries. Provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Covers a variety of battery types in depth, such as zinc–air batteries, lithium–air batteries, aluminum–air batteries, magnesium–air batteries, lithium–sulfur batteries, vanadium–air redox flow batteries, and metal–sulfur batteries.


From Intrinsic to Extrinsic Design of Lithium-Ion Battery Layered Oxide Cathode Material Via Doping Strategies

From Intrinsic to Extrinsic Design of Lithium-Ion Battery Layered Oxide Cathode Material Via Doping Strategies

Author: Chul-Ho Jung

Publisher: Springer Nature

Published: 2022-10-20

Total Pages: 72

ISBN-13: 9811963983

DOWNLOAD EBOOK

This book addresses the comprehensive understanding of Ni-rich layered oxide of lithium-ion batteries cathodes materials, especially focusing on the effect of dopant on the intrinsic and extrinsic effect to its host materials. This book can be divided into three parts, that is, 1. overall understanding of layered oxide system, 2. intrinsic effect of dopant on layered oxides, and 3. extrinsic effect of dopant on layered oxides. To truly understand and discover the fundamental solution (e.g. doping) to improve the Ni-rich layered oxides cathodic performance, understanding the foundation of layered oxide degradation mechanism is the key, thus, the first chapter focuses on discovering the true degradation mechanisms of layered oxides systems. Then, the second and third chapter deals with the effect of dopant on alleviating the fundamental degradation mechanism of Ni-rich layered oxides, which we believe is the first insight ever been provided. The content described in this book will provide research insight to develop high-performance Ni-rich layered oxide cathode materials and serve as a guide for those who study energy storage systems. ​


Lithium-ion Battery Materials and Engineering

Lithium-ion Battery Materials and Engineering

Author: Malgorzata K. Gulbinska

Publisher: Springer

Published: 2014-09-06

Total Pages: 212

ISBN-13: 1447165489

DOWNLOAD EBOOK

Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell’s performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.


Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries

Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries

Author: Guangmin Zhou

Publisher: Springer

Published: 2017-02-09

Total Pages: 131

ISBN-13: 9811034060

DOWNLOAD EBOOK

This book focuses on the design, fabrication and applications of carbon-based materials for lithium-sulfur (Li-S) batteries. It provides insights into the localized electrochemical transition of the “solid-solid” reaction instead of the “sulfur-polysulfides-lithium sulfides” reaction through the desolvation effect in subnanometer pores; demonstrates that the dissolution/diffusion of polysulfide anions in electrolyte can be greatly reduced by the strong binding of sulfur to the oxygen-containing groups on reduced graphene oxide; manifests that graphene foam can be used as a 3D current collector for high sulfur loading and high sulfur content cathodes; and presents the design of a unique sandwich structure with pure sulfur between two graphene membranes as a very simple but effective approach to the fabrication of Li-S batteries with ultrafast charge/discharge rates and long service lives. The book offers an invaluable resource for researchers, scientists, and engineers in the field of energy storage, providing essential insights, useful methods, and practical ideas that can be considered for the industrial production and future application of Li-S batteries.