Frontiers of Fundamental Physics and Physics Education Research

Frontiers of Fundamental Physics and Physics Education Research

Author: Burra G. Sidharth

Publisher: Springer Science & Business Media

Published: 2014-03-20

Total Pages: 586

ISBN-13: 331900297X

DOWNLOAD EBOOK

In a knowledge-based society, research into fundamental physics plays a vital role not only in the enhancement of human knowledge but also in the development of new technology that affects everyday life.The international symposium series Frontiers of Fundamental Physics (FFP) regularly brings together eminent scholars and researchers working in various areas in physics to exchange expertise, ideas, results, and new research perspectives. The twelfth such symposium, FFP12, took place at the University of Udine, Italy, and covered diverse fields of research: astrophysics, high energy physics and particle physics, theoretical physics, gravitation and cosmology, condensed matter physics, statistical physics, computational physics, and mathematical physics. Importantly, it also devoted a great deal of attention to physics education research, teacher training in modern physics, and popularization of physics. The high scientific level of FFP12 was guaranteed by the careful selection made by scientific coordinators from among 250 submissions from 28 countries across the world. During the three days of the conference, nine general talks were delivered in plenary sessions, 29 invited talks were given in specific topic areas, and 59 oral presentations were made. This book presents a selection of the best contributions at FFP12 with the aim of acquainting readers with the most important recent advances in fundamental physics and in physics education and teacher development.


Fundamental Physics and Physics Education Research

Fundamental Physics and Physics Education Research

Author: Burra G. Sidharth

Publisher: Springer Nature

Published: 2020-11-11

Total Pages: 289

ISBN-13: 3030529231

DOWNLOAD EBOOK

This book highlights selected contributions presented at the 15th annual international symposium Frontiers of Fundamental Physics (FFP15), with the aim of informing readers about the most important recent advances in fundamental physics and physics education research. The FFP series offers a platform for physicists from around the world to present their latest theories and findings. The latest symposium was held in Orihuela, Spain and covered diverse fields of research, including gravitation, astronomy and astrophysics, physics of complex systems, high-energy physics, and mathematical physics. Considerable attention was also paid to physics education research, teacher education in physics, and the popularization of physics. In a knowledge-based society, research into fundamental physics plays a vital role in both the advancement of human knowledge and the development of new technologies. Presenting valuable new peer-reviewed contributions submitted from 15 countries, this book will appeal to a broad audience of scholars and researchers.


Physics in a New Era

Physics in a New Era

Author: National Research Council

Publisher: National Academies Press

Published: 2001-07-15

Total Pages: 203

ISBN-13: 0309073421

DOWNLOAD EBOOK

Physics at the beginning of the twenty-first century has reached new levels of accomplishment and impact in a society and nation that are changing rapidly. Accomplishments have led us into the information age and fueled broad technological and economic development. The pace of discovery is quickening and stronger links with other fields such as the biological sciences are being developed. The intellectual reach has never been greater, and the questions being asked are more ambitious than ever before. Physics in a New Era is the final report of the NRC's six-volume decadal physics survey. The book reviews the frontiers of physics research, examines the role of physics in our society, and makes recommendations designed to strengthen physics and its ability to serve important needs such as national security, the economy, information technology, and education.


Mathematics in Physics Education

Mathematics in Physics Education

Author: Gesche Pospiech

Publisher: Springer

Published: 2019-07-02

Total Pages: 383

ISBN-13: 3030046273

DOWNLOAD EBOOK

This book is about mathematics in physics education, the difficulties students have in learning physics, and the way in which mathematization can help to improve physics teaching and learning. The book brings together different teaching and learning perspectives, and addresses both fundamental considerations and practical aspects. Divided into four parts, the book starts out with theoretical viewpoints that enlighten the interplay of physics and mathematics also including historical developments. The second part delves into the learners’ perspective. It addresses aspects of the learning by secondary school students as well as by students just entering university, or teacher students. Topics discussed range from problem solving over the role of graphs to integrated mathematics and physics learning. The third part includes a broad range of subjects from teachers’ views and knowledge, the analysis of classroom discourse and an evaluated teaching proposal. The last part describes approaches that take up mathematization in a broader interpretation, and includes the presentation of a model for physics teachers’ pedagogical content knowledge (PCK) specific to the role of mathematics in physics.


Physics Teaching and Learning

Physics Teaching and Learning

Author: Dennis W. Sunal

Publisher: IAP

Published: 2019-05-01

Total Pages: 264

ISBN-13: 1641136588

DOWNLOAD EBOOK

Physics Teaching and Learning: Challenging the Paradigm, RISE Volume 8, focuses on research contributions challenging the basic assumptions, ways of thinking, and practices commonly accepted in physics education. Teaching physics involves multifaceted, research-based, value added strategies designed to improve academic engagement and depth of learning. In this volume, researchers, teaching and curriculum reformers, and reform implementers discuss a range of important issues. The volume should be considered as a first step in thinking through what physics teaching and physics learning might address in teacher preparation programs, in-service professional development programs, and in classrooms. To facilitate thinking about research-based physics teaching and learning each chapter in the volume was organized around five common elements: 1. A significant review of research in the issue or problem area. 2. Themes addressed are relevant for the teaching and learning of K-16 science 3. Discussion of original research by the author(s) addressing the major theme of the chapter. 4. Bridge gaps between theory and practice and/or research and practice. 5. Concerns and needs are addressed of school/community context stakeholders including students, teachers, parents, administrators, and community members.


Research and Innovation in Physics Education: Two Sides of the Same Coin

Research and Innovation in Physics Education: Two Sides of the Same Coin

Author: Jenaro Guisasola

Publisher: Springer Nature

Published: 2020-08-20

Total Pages: 247

ISBN-13: 3030511820

DOWNLOAD EBOOK

This book describes novel approaches designed to enhance the professional training of physics teachers, and explores innovations in the teaching and learning of physics in the classroom and laboratory. It features selected contributions from the International Research Group on Physics Teaching (GIREP) and Multimedia in Physics Teaching and Learning (MPTL) Conference, held in Donostia-San Sebastian, Spain, in July 2018, which brought together two communities: researchers in physics education and physics teachers. The book covers a broad range of topics, highlighting important aspects of the relationship between research and innovation in the teaching of physics, and presenting fresh insights to help improve learning processes and instruction. Offering a contemporary vision of physics teaching and the learning process, the book is of interest to all teachers and researchers committed to teaching and learning physics on the basis of good evidence.


Multiple Representations in Physics Education

Multiple Representations in Physics Education

Author: David F. Treagust

Publisher: Springer

Published: 2017-07-24

Total Pages: 329

ISBN-13: 3319589148

DOWNLOAD EBOOK

This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementation of representations should consider design principles for using multiple representations. Investigations regarding their effect on classroom communication as well as on the learning results in all levels of schooling and for different topics of physics are reported. The book is intended for physics educators and their students at universities and for physics teachers in schools to apply multiple representations in physics in a productive way.


Teaching Physics with the Physics Suite CD

Teaching Physics with the Physics Suite CD

Author: Edward F. Redish

Publisher: John Wiley & Sons

Published: 2003-02-03

Total Pages: 232

ISBN-13:

DOWNLOAD EBOOK

Written by one of the leaders of the Physics Education Research (PER) movement, Teaching Physics is a book for anyone interested in learning how to become a more effective physics teacher. Rather than reviewing specific topics in physics with hints for how to teach them and lists of common student difficulties, Teaching Physics presents a variety of tools for improving both the teaching and learning of physics--from new kinds of homework and exam problems, to surveys for figuring out what has happened in your class, to tools for taking and analyzing data using computers and video. Teaching Physics is a companion guide to using the Physics Suite, an integrated collection of research-based instructional materials for lecture, laboratory, recitation, and workshop/studio environments. But even if you don't use a single element from the Suite, Teaching Physics can help you enhance your students' learning experience.


Teaching Einsteinian Physics in Schools

Teaching Einsteinian Physics in Schools

Author: Magdalena Kersting

Publisher: Routledge

Published: 2021-08-30

Total Pages: 499

ISBN-13: 1000374130

DOWNLOAD EBOOK

In our world today, scientists and technologists speak one language of reality. Everyone else, whether they be prime ministers, lawyers, or primary school teachers speak an outdated Newtonian language of reality. While Newton saw time and space as rigid and absolute, Einstein showed that time is relative – it depends on height and velocity – and that space can stretch and distort. The modern Einsteinian perspective represents a significant paradigm shift compared with the Newtonian paradigm that underpins most of the school education today. Research has shown that young learners quickly access and accept Einsteinian concepts and the modern language of reality. Students enjoy learning about curved space, photons, gravitational waves, and time dilation; often, they ask for more! A consistent education within the Einsteinian paradigm requires rethinking of science education across the entire school curriculum, and this is now attracting attention around the world. This book brings together a coherent set of chapters written by leading experts in the field of Einsteinian physics education. The book begins by exploring the fundamental concepts of space, time, light, and gravity and how teachers can introduce these topics at an early age. A radical change in the curriculum requires new learning instruments and innovative instructional approaches. Throughout the book, the authors emphasise and discuss evidence-based approaches to Einsteinian concepts, including computer- based tools, geometrical methods, models and analogies, and simplified mathematical treatments. Teaching Einsteinian Physics in Schools is designed as a resource for teacher education students, primary and secondary science teachers, and for anyone interested in a scientifically accurate description of physical reality at a level appropriate for school education.