Functions, Spaces, and Expansions

Functions, Spaces, and Expansions

Author: Ole Christensen

Publisher: Springer Science & Business Media

Published: 2010-05-27

Total Pages: 280

ISBN-13: 0817649808

DOWNLOAD EBOOK

This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.


Applications of Functional Analysis in Engineering

Applications of Functional Analysis in Engineering

Author: J. Nowinski

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 309

ISBN-13: 146843926X

DOWNLOAD EBOOK

Functional analysis owes its OrIgms to the discovery of certain striking analogies between apparently distinct disciplines of mathematics such as analysis, algebra, and geometry. At the turn of the nineteenth century, a number of observations, made sporadically over the preceding years, began to inspire systematic investigations into the common features of these three disciplines, which have developed rather independently of each other for so long. It was found that many concepts of this triad-analysis, algebra, geometry-could be incorporated into a single, but considerably more abstract, new discipline which came to be called functional analysis. In this way, many aspects of analysis and algebra acquired unexpected and pro found geometric meaning, while geometric methods inspired new lines of approach in analysis and algebra. A first significant step toward the unification and generalization of algebra, analysis, and geometry was taken by Hilbert in 1906, who studied the collection, later called 1 , composed of infinite sequences x = Xb X 2, ... , 2 X , ... , of numbers satisfying the condition that the sum Ik"= 1 X 2 converges. k k The collection 12 became a prototype of the class of collections known today as Hilbert spaces.


Eigenfunction Expansions, Operator Algebras and Riemannian Symmetric Spaces

Eigenfunction Expansions, Operator Algebras and Riemannian Symmetric Spaces

Author: Robert M Kauffman

Publisher: CRC Press

Published: 1996-09-25

Total Pages: 158

ISBN-13: 9780582276345

DOWNLOAD EBOOK

This Research Note pays particular attention to studying the convergence of the expansion and to the case where D is a family of partial differential operators. All operators in the natural von Neumann algebraassociated with D, and also unbounded operators affiliated with this algebra, are expanded simultaneously in terms of generalized eigenprojections. These are operators which carry a natural space associated with D into its dual. The elements of the range of these eigenprojections are the eigenfunctions, which solve the appropriate eigenvalue equations by duality. The spectral measure is abstractly defined, but its absolute continuity with respect to Hausdorf measure on the joint spectrum is shown to occur when the eigenfunctions are very well-behaved. Uniqueness results are given showing that any two expansions arise from each other by a simple change of variable. A considerable effort has been made to keep the book self-contained for readers with a background in functional analysis including a basic understanding of the theory of von Neumann algebras. More advanced topics in functional analysis, andan introduction to differential geometry and differential operator theory, mostly without proofs, are given in an extensive section on background material.


Functions of a Real Variable

Functions of a Real Variable

Author: N. Bourbaki

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 343

ISBN-13: 3642593151

DOWNLOAD EBOOK

This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.


Analysis in Euclidean Space

Analysis in Euclidean Space

Author: Kenneth Hoffman

Publisher: Courier Dover Publications

Published: 2019-07-17

Total Pages: 449

ISBN-13: 0486833658

DOWNLOAD EBOOK

Developed for an introductory course in mathematical analysis at MIT, this text focuses on concepts, principles, and methods. Its introductions to real and complex analysis are closely formulated, and they constitute a natural introduction to complex function theory. Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover sequences of functions, normed linear spaces, and the Lebesgue interval. They discuss most of the basic properties of integral and measure, including a brief look at orthogonal expansions. A chapter on differentiable mappings addresses implicit and inverse function theorems and the change of variable theorem. Exercises appear throughout the book, and extensive supplementary material includes a Bibliography, List of Symbols, Index, and an Appendix with background in elementary set theory.


Boundary Value Problems and Fourier Expansions

Boundary Value Problems and Fourier Expansions

Author: Charles R. MacCluer

Publisher: Dover Publications

Published: 2013-12-20

Total Pages: 384

ISBN-13: 9780486788678

DOWNLOAD EBOOK

Based on modern Sobolev methods, this text integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. 2004 edition. Includes 64 figures. Exercises.


Harmonic Function Theory

Harmonic Function Theory

Author: Sheldon Axler

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 266

ISBN-13: 1475781377

DOWNLOAD EBOOK

This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.


An Introduction to Hilbert Space

An Introduction to Hilbert Space

Author: N. Young

Publisher: Cambridge University Press

Published: 1988-07-21

Total Pages: 254

ISBN-13: 1107717167

DOWNLOAD EBOOK

This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.


Elementary Functional Analysis

Elementary Functional Analysis

Author: Georgi E. Shilov

Publisher: Courier Corporation

Published: 2013-04-15

Total Pages: 354

ISBN-13: 0486318680

DOWNLOAD EBOOK

Introductory text covers basic structures of mathematical analysis (linear spaces, metric spaces, normed linear spaces, etc.), differential equations, orthogonal expansions, Fourier transforms, and more. Includes problems with hints and answers. Bibliography. 1974 edition.


The Structure of Functions

The Structure of Functions

Author: Hans Triebel

Publisher: Springer Science & Business Media

Published: 2012-12-13

Total Pages: 437

ISBN-13: 3034805691

DOWNLOAD EBOOK

This book deals with the constructive Weierstrassian approach to the theory of function spaces and various applications. The first chapter is devoted to a detailed study of quarkonial (subatomic) decompositions of functions and distributions on euclidean spaces, domains, manifolds and fractals. This approach combines the advantages of atomic and wavelet representations. It paves the way to sharp inequalities and embeddings in function spaces, spectral theory of fractal elliptic operators, and a regularity theory of some semi-linear equations. The book is self-contained, although some parts may be considered as a continuation of the author's book Fractals and Spectra. It is directed to mathematicians and (theoretical) physicists interested in the topics indicated and, in particular, how they are interrelated. - - - The book under review can be regarded as a continuation of [his book on "Fractals and spectra", 1997] (...) There are many sections named: comments, preparations, motivations, discussions and so on. These parts of the book seem to be very interesting and valuable. They help the reader to deal with the main course. (Mathematical Reviews)