In recent years, new yeast species have proven their value and novel biotechnological applications have emerged. This book compiles the multi-faceted genetic repertoire of several yeasts relevant to modern biotechnology, and describes their utilization in research and application in the light of their genetic make-up and physiological characteristics. Moreover, the book presents a thorough overview of a wide array of methodologies from classical genetics to modern genomics technologies that have been and are being used in functional analysis of yeasts.
This volume scopes several aspects of non-conventional yeast research prepared by the leading specialists in the field. An introduction on taxonomy and systematics enhances the reader’s knowledge on yeasts beyond established ones such as Saccharomyces cerevisiae. Biotechnological approaches that involve fungal utilization of unusual substrates, production of biofuels and useful chemicals as citric acid, glutathione or erythritol are discussed. Further, strategies for metabolic engineering based on knowledge on regulation of gene expression as well as sensing and signaling pathways are presented. The book targets researchers and advanced students working in Microbiology, Microbial Biotechnology and Biochemistry.
It is said that "necessity is the mother of invention". To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citi zens. Looking at the history of mankind, however, one has to add that "Ieisure is the mother of cultural improvement". Man's creative genius flourished only when his mind, freed from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that "natural selection mere(y tnodifted, while redundanry created". Natural selection has been extremely effective in policing alleHe mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Y et, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impos sible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redun dant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus.
This book conveys many significant messages for the food engineering and allied professions: the importance of working in multidisciplinary teams, the relevance of developing food engineering based on well-established principles, the benefits of developing the field by bringing together experts from industry, academia and government, and the unparalleled advantage of working as globally as possible in the understanding, development, and applications of food engineering principles. I am delighted to welcome this book to the Series and I am convinced colleagues from all parts of the world will gain great value from it.
During the past few decades we have witnessed an era of remarkable growth in the field of molecular biology. In 1950 very little was known of the chemical constitution of biological systems, the manner in which information was trans mitted from one organism to another, or the extent to which the chemical basis of life is unified. The picture today is dramatically different. We have an almost bewildering variety of information detailing many different aspects of life at the molecular level. There great advances have brought with them some breath-taking insights into the molecular mechanisms used by nature for rep licating, distributing and modifying biological information. We have learned a great deal about the chemical and physical nature of the macromolecular nucleic acids and proteins, and the manner in which carbohydrates, lipids and smaller molecules work together to provide the molecular setting of living sys tems. It might be said that these few decades have replaced a near vacuum of information with a very large surplus. It is in the context of this flood of information that this series of monographs on molecular biology has been organized. The idea is to bring together in one place, between the covers of one book, a concise assessment of the state of the subject in a well-defined field. This will enable the reader to get a sense of historical perspectiv(}-what is known about the field today-and a description of the frontiers of research where our knowledge is increasing steadily.
This book discusses genome-based strategies to provide a holistic understanding of yeasts in Human Health and as model organisms in basic research or industrial production. Using numerous Saccharomyces cerevisiae strains and various non-conventional yeast species isolated from diverse origins, it describes essential biological processes, the biotechnological exploitation of yeast and pathogenesis control. It also demonstrates how functional and comparative genomics and the development of genome engineering tools are used in modern yeast research. The use of yeasts as experimental eukaryotic models increasingly gained prominence when several Nobel Prizes in Physiology/Medicine and Chemistry were awarded for innovative research, using yeast strains to elucidate molecular mechanisms in a wide range of human physiological processes and diseases, such as autophagy, cell cycle regulation and telomerase activity. This book offers useful insights for scientists in yeast research, clinical scientists working with yeast infectious models and for industrial researchers using applied microbiology.
The second edition of the book begins with the description of the diversity of wine-related microorganisms, followed by an outline of their primary and energy metabolism. Subsequently, important aspects of the secondary metabolism are dealt with, since these activities have an impact on wine quality and off-flavour formation. Then chapters about stimulating and inhibitory growth factors follow. This knowledge is helpful for the growth management of different microbial species. The next chapters focus on the application of the consolidated findings of molecular biology and regulation the functioning of regulatory cellular networks, leading to a better understanding of the phenotypic behaviour of the microbes in general and especially of the starter cultures as well as of stimulatory and inhibitory cell-cell interactions during wine making. In the last part of the book, a compilation of modern methods complete the understanding of microbial processes during the conversion of must to wine.This broad range of topics about the biology of the microbes involved in the vinification process could be provided in one book only because of the input of many experts from different wine-growing countries.
Yeast is one of the oldest domesticated organisms and has both industrial and domestic applications. In addition, it is very widely used as a eukaryotic model organism in biological research and has offered valuable knowledge of genetics and basic cellular processes. In fact, studies in yeast have offered insight in mechanisms underlying ageing and diseases such as Alzheimers, Parkinsons and cancer. Yeast is also widely used in the lab as a tool for many technologies such as two-hybrid analysis, high throughput protein purification and localization and gene expression profiling. The broad range of uses and applications of this organism undoubtedly shows that it is invalubale in research, technology and industry. Written by one of the world's experts in yeast, this book offers insight in yeast biology and its use in studying cellular mechanisms.