Function Algebras on Finite Sets

Function Algebras on Finite Sets

Author: Dietlinde Lau

Publisher: Springer Science & Business Media

Published: 2006-11-23

Total Pages: 668

ISBN-13: 3540360239

DOWNLOAD EBOOK

Function Algebras on Finite Sets gives a broad introduction to the subject, leading up to the cutting edge of research. The general concepts of the Universal Algebra are given in the first part of the book, to familiarize the reader from the very beginning on with the algebraic side of function algebras. The second part covers the following topics: Galois-connection between function algebras and relation algebras, completeness criterions, and clone theory.


Real Function Algebras

Real Function Algebras

Author: S.H. Kulkarni

Publisher: CRC Press

Published: 2020-08-27

Total Pages: 204

ISBN-13: 100014884X

DOWNLOAD EBOOK

This self-contained reference/text presents a thorough account of the theory of real function algebras. Employing the intrinsic approach, avoiding the complexification technique, and generalizing the theory of complex function algebras, this single-source volume includes: an introduction to real Banach algebras; various generalizations of the Stone-Weierstrass theorem; Gleason parts; Choquet and Shilov boundaries; isometries of real function algebras; extensive references; and a detailed bibliography.;Real Function Algebras offers results of independent interest such as: topological conditions for the commutativity of a real or complex Banach algebra; Ransford's short elementary proof of the Bishop-Stone-Weierstrass theorem; the implication of the analyticity or antianalyticity of f from the harmonicity of Re f, Re f(2), Re f(3), and Re f(4); and the positivity of the real part of a linear functional on a subspace of C(X).;With over 600 display equations, this reference is for mathematical analysts; pure, applied, and industrial mathematicians; and theoretical physicists; and a text for courses in Banach algebras and function algebras.


Natural Function Algebras

Natural Function Algebras

Author: Charles E. Rickart

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 252

ISBN-13: 1461380707

DOWNLOAD EBOOK

The term "function algebra" usually refers to a uniformly closed algebra of complex valued continuous functions on a compact Hausdorff space. Such Banach alge bras, which are also called "uniform algebras", have been much studied during the past 15 or 20 years. Since the most important examples of uniform algebras consist of, or are built up from, analytic functions, it is not surprising that most of the work has been dominated by questions of analyticity in one form or another. In fact, the study of these special algebras and their generalizations accounts for the bulk of the re search on function algebras. We are concerned here, however, with another facet of the subject based on the observation that very general algebras of continuous func tions tend to exhibit certain properties that are strongly reminiscent of analyticity. Although there exist a variety of well-known properties of this kind that could be mentioned, in many ways the most striking is a local maximum modulus principle proved in 1960 by Hugo Rossi [RIl]. This result, one of the deepest and most elegant in the theory of function algebras, is an essential tool in the theory as we have developed it here. It holds for an arbitrary Banaeh algebra of £unctions defined on the spectrum (maximal ideal space) of the algebra. These are the algebras, along with appropriate generalizations to algebras defined on noncompact spaces, that we call "natural func tion algebras".


Big-Planes, Boundaries and Function Algebras

Big-Planes, Boundaries and Function Algebras

Author: T.V. Tonev

Publisher: Elsevier

Published: 1992-03-02

Total Pages: 313

ISBN-13: 0080872832

DOWNLOAD EBOOK

Treated in this volume are selected topics in analytic &Ggr;-almost-periodic functions and their representations as &Ggr;-analytic functions in the big-plane; n-tuple Shilov boundaries of function spaces, minimal norm principle for vector-valued functions and their applications in the study of vector-valued functions and n-tuple polynomial and rational hulls. Applications to the problem of existence of n-dimensional complex analytic structures, analytic &Ggr;-almost-periodic structures and structures of &Ggr;-analytic big-manifolds respectively in commutative Banach algebra spectra are also discussed.


Clifford Algebra and Spinor-Valued Functions

Clifford Algebra and Spinor-Valued Functions

Author: R. Delanghe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 501

ISBN-13: 9401129223

DOWNLOAD EBOOK

This volume describes the substantial developments in Clifford analysis which have taken place during the last decade and, in particular, the role of the spin group in the study of null solutions of real and complexified Dirac and Laplace operators. The book has six main chapters. The first two (Chapters 0 and I) present classical results on real and complex Clifford algebras and show how lower-dimensional real Clifford algebras are well-suited for describing basic geometric notions in Euclidean space. Chapters II and III illustrate how Clifford analysis extends and refines the computational tools available in complex analysis in the plane or harmonic analysis in space. In Chapter IV the concept of monogenic differential forms is generalized to the case of spin-manifolds. Chapter V deals with analysis on homogeneous spaces, and shows how Clifford analysis may be connected with the Penrose transform. The volume concludes with some Appendices which present basic results relating to the algebraic and analytic structures discussed. These are made accessible for computational purposes by means of computer algebra programmes written in REDUCE and are contained on an accompanying floppy disk.


Harmonic Functions on Groups and Fourier Algebras

Harmonic Functions on Groups and Fourier Algebras

Author: Cho-Ho Chu

Publisher: Springer

Published: 2004-10-11

Total Pages: 113

ISBN-13: 3540477934

DOWNLOAD EBOOK

This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.


Function Spaces

Function Spaces

Author: Krzysztof Jarosz

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 384

ISBN-13: 0821809393

DOWNLOAD EBOOK

This proceedings volume presents 36 papers given by leading experts during the Third Conference on Function Spaces held at Southern Illinois University at Edwardsville. A wide range of topics in the subject area are covered. Most papers are written for nonexperts, so the book can serve as a good introduction to the topic for those interested in this area. The book presents the following broad range of topics, including spaces and algebras of analytic functions of one and of many variables, $Lp$ spaces, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces and related subjects. Known results, open problems, and new discoveries are featured. At the time of publication, information about the book, the conference, and a list and pictures of contributors are available on the Web at www.siue.edu/MATH/conference.htm.


Function Algebras

Function Algebras

Author: I. Suciu

Publisher: Springer

Published: 1975-06-24

Total Pages: 290

ISBN-13:

DOWNLOAD EBOOK

Under the title of Function Algebras we may now include a very large number of works. published mainly in the last decade, which consti tute one of the important chapters of functional analysis. This chapter has grown up from various problems. permanently furnished to mathe matics. by the theory of functions. using modern methods of algebra, topology and functional analysis and presenting large possibilities of applications in operators theory. Herefrom proceeds its living character, the variety of obtained results. the variety of forms and contexts in which these results can be found. This also explains the difficulty of an exhaustive exposition of these problems. The purpose of the monograph is to present a coherent exposition of the fundamental results of this theory with an orientation to their applicability to the theory of operator representations of function alge bras. The idea of such a work appeared during the seminaries on function algebras held at the Mathematical Institute in Bucharest. under the direc tion of C. Foia~ and at the Faculty of Mathematics and Mechanics under the direction of N. Boboc. It is a pleasure for the author to express his gratitude to C. Foia~ for assistance in his efforts. in general. and for the large contribution the discussions and cooperation with him had brought in the elaboration of this monograph. I also would like to thank N. Boboc for the clear discussions we have had during the seminaries and the elaboration of some chapters.