In summarizing the results obtained in the first five years of the National Jet Fuel Combustion Program (NJFCP), this book demonstrates that there is still much to be learned about the combustion of alternative jet fuels.
Reflecting the developments in gas turbine combustion technology that have occurred in the last decade, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition provides an up-to-date design manual and research reference on the design, manufacture, and operation of gas turbine combustors in applications ranging from aeronautical to po
The development of clean, sustainable energy systems is a preeminent issue in our time. Gas turbines will continue to be important combustion-based energy conversion devices for many decades to come, used for aircraft propulsion, ground-based power generation, and mechanical-drive applications. This book compiles the key scientific and technological knowledge associated with gas turbine emissions into a single authoritative source.
Aviation Fuels provides up-to-date data on fuel effects on combustion performance and use of alternative fuels in aircraft. This book covers the latest advances on aviation fuel technologies, including alternative fuels, feedstocks and manufacturing processes, combustion performance, chemical modeling, fuel systems compatibility and the technical and environmental challenges for implementing the use of alternative fuels for aviation. Aviation fuel and combustion researchers, academics, and program managers for aviation technologies will value this comprehensive overview and summary on the present status of aviation fuels. Presents an overview on all relevant fields of aviation fuels, including production, approval, fuel systems compatibility and combustion (including emissions) Discusses the environmental impacts and carbon footprint of alternative fuels Features a chapter on electric flight and hydrogen powered aircraft and how its implementation will impact the aviation industry
A significant addition to the literature on gas turbine technology, the second edition of Gas Turbine Performance is a lengthy text covering product advances and technological developments. Including extensive figures, charts, tables and formulae, this book will interest everyone concerned with gas turbine technology, whether they are designers, marketing staff or users.
Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.
This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.
As the demands for cleaner, more efficient, reduced and zero carbon emitting transportation increase, the traditional focus of Combustion Chemistry research is stretching and adapting to help provide solutions to these contemporary issues. Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? presents a guide to current research in the field and an exploration of possible future steps as we move towards cleaner, greener and reduced carbon combustion chemistry. Beginning with a discussion of engine emissions and soot, the book goes on to discuss a range of alternative fuels, including hydrogen, ammonia, small alcohols and other bio-oxygenates, natural gas, syngas and synthesized hydrocarbon fuels. Methods for predicting and improving efficiency and sustainability, such as low temperature and catalytic combustion, chemical looping, supercritical fluid combustion, and diagnostic monitoring even at high pressure, are then explored. Some novel aspects of biomass derived aviation fuels and combustion synthesis are also covered. Combining the knowledge and experience of an interdisciplinary team of experts in the field, Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? is an insightful guide to current and future focus areas for combustion chemistry researchers in line with the transition to greener, cleaner technologies. - Provides insight on current developments in combustion chemistry as a tool for supporting a reduced-carbon future - Reviews modeling and diagnostic tools, in addition to key approaches and alternative fuels - Includes projections for the future from leaders in the field, pointing current and prospective researchers to potentially fruitful areas for exploration
This book contains selected papers prepared for the NATO Advanced Study Institute on "Unsteady Combustion", which was held in Praia da Granja, Portugal, 6-17 September 1993. Approximately 100 delegates from 14 countries attended. The Institute was the most recent in a series beginning with "Instrumentation for Combustion and Flow in Engines", held in Vimeiro, Portugal 1987 and followed by "Combusting Flow Diagnostics" conducted in Montechoro, Portugal in 1990. Together, these three Institutes have covered a wide range of experimental and theoretical topics arising in the research and development of combustion systems with particular emphasis on gas-turbine combustors and internal combustion engines. The emphasis has evolved roughly from instrumentation and experimental techniques to the mixture of experiment, theory and computational work covered in the present volume. As the title of this book implies, the chief aim of this Institute was to provide a broad sampling of problems arising with time-dependent behaviour in combustors. In fact, of course, that intention encompasses practically all possibilities, for "steady" combustion hardly exists if one looks sufficiently closely at the processes in a combustion chamber. The point really is that, apart from the excellent paper by Bahr (Chapter 10) discussing the technology of combustors for aircraft gas turbines, little attention is directed to matters of steady performance. The volume is divided into three parts devoted to the subjects of combustion-induced oscillations; combustion in internal combustion engines; and experimental techniques and modelling.